Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÀÚ·á½Ç > ¿ì¼ö±â¼ú¡¤Àû¿ë»ç·Ê
[±Û·Î¹ú¼ö󸮱â¼ú] ¶û¼¼½º°¡ °³¹ßÇÑ RO ¸âºê·¹ÀÎ ¡®·¹¿Íºê·¹ÀΡ¯(LewabraneⓇ)
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.07.12 Á¶È¸¼ö 1664
ÆÄÀÏ÷ºÎ

±Û·Î¹ú¼ö󸮱â¼ú-¶û¼¼½º.pdf


[±Û·Î¹ú¼ö󸮱â¼ú] ¶û¼¼½º°¡ °³¹ßÇÑ RO ¸âºê·¹ÀÎ ¡®·¹¿Íºê·¹ÀΡ¯(LewabraneⓇ)
 
 
°í°¡±³ Æú¸®¾Æ¹Ìµå º¹ÇÕ±¸Á¶ ¸· ±â¼ú Àû¿ë
¿°ºÐ¡¤À¯±â¿À¿°¹°Áú Á¦°ÅÀ² ³ô°í À¯·®µµ ³ô¾Æ¡¦¿ì¼öÇÑ »ý»ê¼º ÀÚ¶û
2012³â °³¹ß ÈÄ Àü¼¼°è Çؼö´ã¼öÈ­½Ã¼³¡¤»ê¾÷ºÐ¾ß µî¿¡ ¼ö½Ê¸¸°³ »ç¿ë

¿ª»ïÅõ(RO) ¸âºê·¹ÀÎ ½ÃÀå¿¡ ¡®µ¶ÀÏÁ¦(Made in Germany)¡¯ Á¦Ç°ÀÌ º»°ÝÀûÀ¸·Î Ãâ½ÃµÇ±â ½ÃÀÛÇÑ °ÍÀº 2012³âºÎÅÍ·Î, ¶û¼¼½º(LANXESS¡¤http://lanxess.kr) ¿ª½Ã ºü¸£°Ô ¼ºÀåÇÏ°í ÀÖ´Â ¸âºê·¹ÀÎ Á¦Ç°ÀÇ ½ÃÀ强¿¡ ÁÖ¸ñÇØ ±×°£ À̿±³È¯¼öÁö ½ÃÀå¿¡¼­ ½×¾Æ¿Â ³ëÇÏ¿ì¿Í ½ÃÀå Á¢±Ù¼ºÀ» ¹ÙÅÁÀ¸·Î ¸âºê·¹ÀÎ ½ÃÀå¿¡ ¶Ù¾îµé¾ú´Ù.

 
 
µ¶ÀÏ°è Ư¼ö È­Çбâ¾÷ÀÎ ¶û¼¼½º(LANXESS)´Â RO ¸âºê·¹ÀÎÀΡ®·¹¿Íºê·¹ÀÎ(LewabraneⓇ)¡¯À» 2012³â °³¹ß, ¼ö½Ê¸¸ °³ÀÇ ¸âºê·¹ÀÎÀÌ Çؼö´ã¼öÈ­ ½Ã¼³À» ºñ·ÔÇØ »ê¾÷ºÐ¾ß °÷°÷¿¡ Àû¿ëµÇ¸é¼­ ¼¼°è½ÃÀå¿¡ ÁøÀÔÇÑÁö ºÒ°ú 3³â¿© ¸¸¿¡ ¼º°øÀûÀ¸·Î ÀÚ¸®¸Å±èÇß´Ù.

¶û¼¼½º´Â ÁøÀÔ Ãʱâ, ±ÕÀÏÀÔÀÚ(monodisperse) À̿±³È¯¼öÁö Á¦Ç°À» »ý»êÇÏ´ø µ¶ÀÏ ºñÅÍÆçÆ®(Bitterfeld) °øÀå¿¡ ¿ª»ïÅõ »ý»ê¼³ºñ¸¦ Ãß°¡ÇÏ´Â °ÍÀ¸·Î º»°ÝÀûÀ¸·Î ºñÁî´Ï½º¸¦ ½ÃÀÛÇß´Ù. ½Å °øÁ¤¿¡´Â ¼ö ³â °£ÀÇ ÁßÇÕ°øÁ¤ °æÇèÀ» ¹ÙÅÁÀ¸·Î È®½ÇÈ÷ °ËÁõµÈ Æú¸®¾Æ¹Ìµå ±â¹ÝÀÇ º¹ÇÕ±¸Á¶ ¸âºê·¹ÀÎ(composite membrane) ±â¼úÀ» Àû¿ë, °íµµ·Î °¡±³(crosslink)µÈ Æú¸®¾Æ¹Ìµå ¸âºê·¹ÀÎÀ» ź»ý½ÃÄ×´Ù. ¼ö½Ê¸¸ °³ÀÇ ¸âºê·¹ÀÎÀÌ °÷°÷¿¡ Àû¿ëµÇ¸é¼­ ¶û¼¼½º´Â ½ÃÀå¿¡ ÁøÀÔÇÑÁö ºÒ°ú 3³â¿© ¸¸¿¡ ¼º°øÀûÀ¸·Î ÀÚ¸®¸Å±èÇß´Ù.
 
 
 
 
 
µ¶ÀÏ ºñÅÍÆçÆ®(Bitterfeld) °øÀå¿¡¼­ »ý»êµÇ´Â ¶û¼¼½º¡®·¹¿Íºê·¹ÀÎ(LewabraneⓇ)¡¯¿ª»ïÅõ ºÐ¸®¸·.

Since 2012 reverse osmosis(RO) membranes Made in Germany are available. The main reason the German company LANXESS entered this market is both the rapid market growth and its existing access to the market through the companys ion exchange resins. It added the RO manufacturing operation to the existing production of monodisperse ion exchange resins in Bitterfeld near Berlin.

LANXESS used tried-and-tested polyamide-based composite membrane technology for this new operation. From the outset, however, the goal was to achieve highly automated production and apply the companys many years of experience in polymerization processes. This led to the concept of highly crosslinked polyamide membranes. With several tens of thousands of membrane elements installed in just under three years on the market, the product launch can be considered a success.

°íµµ·Î °¡±³µÈ ÄÄÆ÷ÁöÆ® ¸âºê·¹ÀÎ(Highly crosslinked composite membranes)
º¹ÇÕ±¸Á¶ ¸âºê·¹ÀÎÀº ºÎÁ÷Æ÷(Æú¸®¿¡½ºÅ׸£), Æú¸®¼³Æù ÁöÁöü, Æú¸®¾Æ¹ÌµåÃþÀ̶ó´Â 3
°³ÀÇ ÃþÀ¸·Î ±¸¼ºµÈ´Ù. Æú¸®¾Æ¹ÌµåÃþÀº ¿°È­Æ®¸®¸ÞÆ¿·»(TMC)°ú ¸ÞŸÆä´Ò´ÙÀ̾ƹÎ(m-PDA)ÀÇ Ç¥¸é ÁßÇÕ °úÁ¤À» °ÅÃÄ ¸¸µé¾îÁø´Ù. ¿©±â¼­ ³×Æ®¿öÅ© ±¸Á¶°¡ ¿ÏÀüÈ÷ Çü¼ºµÇ¾î¾ß Çϸç, ¿°¼Ò-Ä«¸£º¹½Ç±â(Chlorine-carboxyl)°¡ ¹°°ú ºü¸£°Ô ¹ÝÀÀÇÏ¿© Ç¥¸éÀÌ À½(-)ÀüÇϸ¦ ¶ç´Â Ä«¸£º¹½Ç±â¸¦ Çü¼ºÇÑ´Ù.

 


 
¶û¼¼½ºÀÇ ¹Ú¸·(¾ãÀº Çʸ§) ÇÕ¼º Æú¸®¾Æ¹Ìµå È­Çй°ÁúÀ» ±â¹ÝÀ¸·Î ÇÑ RO ¸âºê·¹ÀΡ®·¹¿Íºê·¹ÀÎ(LewabraneⓇ)¡¯.
ÀÌ·¯ÇÑ ÀÌÂ÷ÀûÀÎ ¹ÝÀÀÀº °¡±³µµ°¡ ³·Àº Æú¸®¸Ó ±¸Á¶¿Í À½ÀüÇÏ Ç¥¸éÀ» Çü¼ºÇÑ´Ù. °¡±³µµ°¡ ³·Àº ±¸Á¶´Â ¸âºê·¹ÀÎÀÇ ³»±¸¼ºÀ» ÀúÇϽÃÅ°°í, À½ÀüÇÏ Ç¥¸éÀº À̿°úÀÇ »óÈ£ÀÛ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¡¹Ç·Î °á°úÀûÀ¸·Î ¿À¿°¹°Áú Á¦°ÅÀ²¿¡ º¯È­¸¦ ÃÊ·¡ÇÑ´Ù.

A composite membrane comprises three layers the non-woven fabric (polyester), a polysulfone support structure and the selective polyamide layer. The latter is formed through surface polymerization of trimethylene chloride(TMC) and meta phenyl diamine (m-PDA). Ideally, the network structure should develop fully, but the chlorine-carboxyl group also reacts quickly with water to form a carboxyl group that produces a surface with a negative charge.

This secondary reaction creates a less crosslinked polymer structure and a negatively charged surface. While the lower crosslinked structure reduces a membranes durability, the negative charged surface leads to interactions with ions that affect membrane rejection. This interaction is depending on the ionic composition of the feed and lead to changing rejection if the feed changes.

The data sheet values for RO membranes are comparable under the specified test conditions, but the differences are apparent in process flows with different cations and anions.

Rejection in the case of inorganic compounds, whose charge can be influenced by the pH, is a particularly good indicator of the electrostatic interactions and thus the membranes surface charge. The results set out below highlight these effects.

Á¦°ÅÀ²¿¡ ¹ÌÄ¡´Â ¿µÇâ(Influence on rejection)
Á¦°ÅÀ²¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¶»çÇϱâ À§ÇØ ½ÇÇè½Ç¿¡¼­ Æò¸· ¸âºê·¹ÀÎÀ» ´ë»óÀ¸·Î Ç÷°½º(flux)¿Í Á¦°ÅÀ²À» Á¶»çÇß´Ù. ¼­·Î ´Ù¸¥ Ç÷°½º¿¡¼­ Á¦°ÅÀ²À» ºñ±³Çϱâ À§ÇØ Ç÷°½º °ª(flux value)Àº µ¿ÀÏÇÏ°Ô Àû¿ëÇß´Ù.

ºØ»êÀº pH¿¡ µû¶ó Á¦°ÅÀ²ÀÌ º¯ÇÏ´Â ´ëÇ¥ÀûÀÎ ¹°Áú·Î, ¼¼°èº¸°Ç±â±¸(WHO)´Â ½Ä¼öÀÇ ºØ¼Ò ³óµµ¸¦ 2.4§·/L ÀÌÇÏ·Î ±ÇÀåÇÏ°í ÀÖ´Ù. ÀÌ·¯ÇÑ ±ÇÀå ¼öÄ¡´Â ´ÜÀÏ ¿ª»ïÅõ(RO) ¿©°ú°øÁ¤À» ÅëÇؼ­µµ ¾òÀ» ¼ö ÀÖ´Ù.

±×·¯³ª ½Ä¼ö¸¦ ³ó¾÷¿¡ »ç¿ëÇÏ´Â ¸î¸î ±¹°¡¿¡¼­´Â °¨±Ö·ù¿Í °°Àº ÀÛ¹°ÀÌ ºØ¼Ò¿¡ ¸Å¿ì ¿¹¹ÎÇÏ°Ô ¹ÝÀÀÇϱ⠶§¹®¿¡ ½Ä¼öÀÇ ºØ¼Ò ³óµµ¸¦ 0.4§·/L ÀÌÇÏ·Î Á¦ÇÑÇÑ´Ù. ÀÌ¿Í °°Àº °æ¿ì 󸮼ö´Â ROó¸® °úÁ¤À» °ÅÃÄ¾ß Çϴµ¥, ¿øÇÏ´Â Á¤µµÀÇ ºØ¼Ò Á¦°Å¸¦ À§Çؼ­´Â ù ´Ü°è ÀÌÈÄ¿¡ pH¸¦ 10À¸·Î ¿Ã·Á¾ß ÇÑ´Ù. ÀÌ´Â ºØ»êÀÌ pH 9.5, ¶Ç´Â ±× ÀÌ»óÀÇ »êµµ¿¡¼­ À½ÀüÇϸ¦ ¶í´Ù´Â Á¡¿¡ Âø¾ÈÇÑ °ÍÀÌ´Ù. ÀÌó·³ À½ÀüÇÏ ¹× À½ÀüÇϸ¦ ¶í Ç¥¸éÀÇ Á¤Àü±â »óÈ£ÀÛ¿ëÀº ºØ¼Ò Á¦°ÅÀ²À» ³ô¿©ÁØ´Ù.
   

¶û¼¼½º RO ¸âºê·¹ÀÎÀΡ®·¹¿Íºê·¹ÀÎ(Lewabrane)¡¯Àº °í°¡±³µµ Æú¸®¾Æ¹ÌµåÃþÀ¸·Î ÀÎÇØ ±â°èÀû¡¤È­ÇÐÀû ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ¾î ³ôÀº ¿°ºÐ Á¦°ÅÀ² ¹× À¯±â¿À¿°¹°Áú Á¦°ÅÀ², ³ôÀº À¯·® µî ¿ì¼öÇÑ »ý»ê¼ºÀ» ÀÚ¶ûÇÑ´Ù.
 


Flat membranes were investigated in test cells and their flux and rejection recorded. The data were normalized to the same flux value to compare the rejection for different fluxes.

The best-known example of rejection changing along with the pH is boric acid. The World Health Organization(WHO) recommends a boron concentration of < 2.4§·/L in drinking water. This value can be achieved in a single RO filtration process. In some countries that also use drinking water for agricultural applications, however, the concentration must be < 0.4§·/L, because crops such as citrus fruits are very sensitive to boron. An RO process with permeate stages is used in this case, with the pH being increased to 10 after the first stage to achieve the required boron rejection. This process makes use of the fact that boric acid has a predominantly negative charge at a pH of 9.5 or higher.

µÎ ¹ø° ´Ü°è¿¡¼­´Â ¿°µµ°¡ ³·¾ÆÁö±â ¶§¹®¿¡ Àú¿¡³ÊÁö RO ¹æ½ÄÀÌ ÁÖ·Î »ç¿ëµÈ´Ù. °íµµ·Î °¡±³µÈ ¸âºê·¹ÀÎÀÌ pH 8 ÀÌÇÏÀÇ »êµµ¿¡¼­µµ 80%ÀÇ Á¦°ÅÀ²À» º¸ÀÎ ¹Ý¸é, °¡±³°¡ ³·Àº ¸âºê·¹ÀÎÀº pH 9 ÀÌ»óÀÏ ¶§¿¡¾ß ºñ½ÁÇÑ Á¦°ÅÀ²À» º¸ÀδÙ. ½ÇÇè°á°ú, °æÀï»ç LE ¸âºê·¹ÀÎÀº °íµµ·Î °¡±³µÈ ¸âºê·¹ÀÎÀÎ ¶û¼¼½º ¡®·¹¿Íºê·¹ÀÎ LE 2014¡¯ º¸´Ù pH »êµµ¿¡ µû¸¥ ºØ¼Ò Á¦°ÅÀ²ÀÌ Å« Â÷À̸¦ º¸¿´´Ù.

Since the salt concentration is low at the second permeate stage, low-energy (LE) RO methods are often used here. The measurements clearly demonstrate the influence of the surface. While the highly crosslinked LE membrane achieves a rejection of 80 percent at pH values of less than 8, the membrane with less crosslinking only does so at pH values higher than 9. The rejection of the competitor LE membrane depends on the boric acids charge to a far greater extent than with a highly crosslinked
membrane.
¶Ç ´Ù¸¥ »ç·Ê·Î º¸ÀÏ·¯ ¿ë¼ö 󸮿¡¼­ ÁÖ·Î º¼ ¼ö ÀÖ´Â ½Ç¸®Ä« Á¦°ÅÀ²À» µé ¼ö ÀÖ´Ù.

Si(OH)4 + OH- = HSiO3- + 2H2O

½Ç¸®Ä«´Â 75§·/L ÀÌÇÏÀÇ ³óµµ¿¡¼­ ¿ëÇصȴÙ. ¾à»ê¼ºÀÎ ½Ç¸®Ä«´Â Áß¼º ¹üÀ§¿¡¼­´Â ºÐ¸®µÇÁö ¾ÊÁö¸¸, pH°¡ Áõ°¡ÇßÀ» ¶§ »êÀÌ ºÐ¸®µÇ¸ç À½ÀüÇÏ·Î ÀÎÇØ Á¦°ÅÀ²ÀÌ »ó½ÂÇÏ´Â °ÍÀ» È®ÀÎÇß´Ù. ÀÌ·¯ÇÑ Æ¯Â¡Àº pH 9, ¶Ç´Â ±× ÀÌ»óÀÇ »êµµ¿¡¼­ È®¿¬ÇÏ°Ô ³ªÅ¸³µ´Ù. ÇÑÆí, Å×½ºÆ®¿¡´Â ÀÏ¹Ý ´ã¼ö¿ë ¸âºê·¹ÀÎ(standard brackish water membrane)ÀÌ »ç¿ëµÆ´Ù.
   
 


A further example that is primarily seen in the treatment of boiler feed water is silica rejection.
Silica is soluble in concentrations of less than 75§·/L. As a weak acid, it is not dissociated in the neutral pH range. As soon as the pH rises, however, the acid dissociates and the rejection increases due to the negative charge. This is clearly noticeable at pH values of 9 or higher. A standard brackish water membrane was used in the test.

¿Âµµ º¯È­°¡ ½Ç¸®Ä« Á¦°ÅÀ²¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¶»çÇÑ °á°ú, °¡±³µµ°¡ ³ôÀº ¸âºê·¹ÀÎÀº ¿Âµµ°¡ º¯ÇÏ´õ¶óµµ ±àÁ¤ÀûÀÎ Á¦°ÅÀ²À» º¸ÀÌ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÀÌ Çö»óÀ» ¼³¸íÇϱâ À§Çؼ­´Â ¿Âµµ°¡ »ó½ÂÇÒ¼ö·Ï ¿©·¯ ¿ä¼ÒµéÀÌ Á¦°ÅÀ²¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Ù´Â Á¡À» ¸í½ÉÇÒ ÇÊ¿ä°¡ ÀÖ´Ù. ³ôÀº ¿Âµµ´Â ¸âºê·¹ÀÎÀ» ºÎÇ®¾î¿À¸£°Ô ¸¸µé°í Åõ¼ö¼ºÀ» °¨¼Ò½ÃÄÑ À¯¼ö·®À» ³ôÀδÙ. ³ô¾ÆÁø À¯¼ö·®Àº °á°úÀûÀ¸·Î ³óµµ ºÐ±ØÀ̶ó ºÒ¸®´Â ¿°ºÐÀÇ Ç¥¸é ³óµµ¸¦ ³ô¿©¼­ Á¦°ÅÀ²À» ³·Ãá´Ù.

½ÇÇèÀ» ÅëÇØ ¸âºê·¹ÀÎÀÇ °¡±³µµ°¡ ³ôÀ»¼ö·Ï ¿Âµµ »ó½Â¿¡ µû¸¥ ºÎÇ®¾î¿À¸§ÀÌ Àû°í, ÀÏÁ¤ÇÑ Á¦°ÅÀ²À» À¯ÁöÇÑ´Ù´Â »ç½ÇÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. ¹Ý¸é, °æÀï»ç ¸âºê·¹ÀÎÀº ¿Âµµ »ó½Â¿¡ µû¶ó Á¦°ÅÀ²ÀÌ °¨¼ÒÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.

 
 
¶û¼¼½º¿¡¼­ Á¦Á¶ÇÑ ¸âºê·¹ÀÎ ¼º´É½ÃÇè ¸ð½À.
The influence of the temperature was also investigated, which revealed that the higher degree of crosslinking also has a positive impact on rejection at different temperatures.

To explain this phenomenon, it is important to bear in mind that several effects have an impact on the rejection as the temperature increases. Higher temperatures cause the membrane to swell and lead to higher water fluxes due to the decrease in water permeability. This higher flux results in a higher surface concentration of salts, called concentration polarization, which may reduce the rejection.

The greater the degree of crosslinking, the less pronounced the swelling as the temperature increases, which means the membranes rejection remains more constant. In the competitor membrane, the rejection decreases because this cannot be compensated by the increased permeate flux.
   
 


ÇÁ·Î¼¼½º¿¡ ¹ÌÄ¡´Â ¿µÇâ(Influence on the process)
ƯÈ÷, º¸ÀÏ·¯ ¿ë¼ö ó¸® ½Ã¿¡´Â ³ôÀº ½Ç¸®Ä« Á¦°ÅÀ²À» ÀÏÁ¤ÇÏ°Ô À¯ÁöÇÏ´Â °ÍÀÌ Áß¿äÇÏ´Ù. ½Ç¸®Ä«´Â È¥»óž(Mixed-bed ion exchange unit)ÀÇ ¼º´ÉÀ» ÀúÇϽÃÅ°±â ¶§¹®ÀÌ´Ù. È¥ÇÕÃþ¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ¶û¼¼½º ¿ª»ïÅõ ¹× À̿±³È¯¼öÁö ¼³°è ¼ÒÇÁÆ®¿þ¾î ÇÁ·Î±×·¥ÀÎ ¡®·¹¿ÍÇ÷¯½º(LewaPlusⓇ)¡¯¸¦ ÀÌ¿ëÇØ °è»êµÆÀ¸¸ç, ´Ù¾çÇÑ ½Ç¸®Ä« Á¦°ÅÀ²°ú ºñ±³¡¤°ËÁõÀ» °ÅÃÆ´Ù.

°è»ê °á°ú, ½Ç¸®Ä« Á¦°ÅÀ²ÀÌ ³ôÀ»¼ö·Ï ºñ¿ëÀý°¨µµ Å©´Ù´Â »ç½ÇÀ» È®ÀÎÇß´Ù. È¥ÇÕÃþ Àç»ý ºñ¿ëÀº 35¡É¿¡¼­µµ 1¸¸ À¯·Î ¹Ì¸¸À¸·Î ³ªÅ¸³µ´Âµ¥, ½Ç¸®Ä« Á¦°ÅÀ²ÀÌ ³·¾ÆÁú¼ö·Ï Àç»ýºñ¿ëÀÌ Áõ°¡ÇÏ´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

Especially when treating boiler feed water, consistently high silica rejection is important, as this reduces the capacity of the mixed-bed ion exchange unit. The influence on the mixed bed was calculated using LewaPlusⓇ , LANXESSs design software for reverse osmosis and ion exchange resins, and compared with various silica rejections.

Provided the silica rejection measurements are correct, the following assumptions can be made for the calculation : The calculations showed that higher silica rejection resulted in significant savings. While the regeneration costs for the mixed bed are less than �10,000, even at temperatures of 35¡É, they are
significantly higher with a lower rejection.

À¯±â¹°Áú Á¦°ÅÀ²(Rejection of organic substances)
À¯±â¹°ÁúÀÇ Á¦°ÅÀ²Àº ºÐÀÚÀÇ ºÎÇÇ¿Í ¾ç±Ø¼º¿¡ µû¶ó À¯±â¹°ÁúÀÇ È®»ê°ú Á¦°ÅÀ²ÀÌ ¿µÇâÀ» ¹Þ±â ¶§¹®¿¡ ´õ¿í ¿¹ÃøÇϱ⠾î·Æ´Ù. ÀüÇϸ¦ ¶çÁö ¾ÊÀº ¹°Áú¿¡¼­´Â Ç¥¸é È¿°ú°¡ Å©Áö ¾Ê±â ¶§¹®¿¡ ºÐÀÚºÎÇÇ°¡ ÀÛÀº ¹°Áú¿¡¼­ °¡±³µµ°¡ ´õ¿í ³ô°Ô ³ªÅ¸³­´Ù.

À¯±â¹°Áú Á¦°ÅÀ²À» È®ÀÎÇÏ´Â ½ÇÇè¿¡¼­´Â ÀÏ¹Ý ´ã¼ö¿ë(standard brackish water) ¸âºê·¹ÀÎ(·¹¿Íºê·¹ÀÎⓇ HF¿Í °æÀï»ç Á¦Ç°)°ú, Àú¾Ð(low-pressure) Á¦Ç°(·¹¿Íºê·¹ÀÎⓇ LE¿Í °æÀï»ç LE)À» ´ë»óÀ¸·Î Á¦°ÅÀ²À» »ìÆ캸¾Ò´Ù.

½ÇÇè °á°ú À¯±â¹°Áúµµ ¹«±â¹°Áú°ú À¯»çÇÑ °æÇâÀ» º¸¿´´Ù. À̼ÒÇÁ·ÎÇÊ ¾ËÄÚ¿Ã(IPA)¿Í ±Û·çÄÚ½º¿Í ¹°Áúó·³ Á¦°ÅÀ²ÀÌ ³ôÀº ¹°ÁúÀÇ °æ¿ì¿¡´Â Á¦Ç°º° Â÷ÀÌ°¡ ¾ø¾úÁö¸¸, µð¸ÞÆ¿Æ÷¸§¾Æ¸¶À̵å(DMF)¿Í ¿ä»ê µî Á¦°ÅÀ²ÀÌ ³·Àº ¹°Áú¿¡¼­´Â Å« Â÷À̸¦ º¸¿´´Ù. ƯÈ÷, Çؼö´ã¼öÈ­¿ë ¸âºê·¹ÀÎÀ» »ç¿ëÇÏ´Â °æ¿ì¿¡´Â Â÷ÀÌ°¡ ´õ

¿í ±Ø¸íÇÏ°Ô ³ªÅ¸³µ´Ù.
The rejection of organic substances is much harder to predict, because both the molecules volume and its polarity affect the diffusion behavior and thus the substances rejection. Since surface effects are less significant in uncharged substances, however, the higher degree of crosslinking is particularly apparent in substances with a lower molecular volume. In this test, the rejections of standard brackish water membranes (Lewabrane
Ⓡ HF and competitor) and low-pressure elements (LewabraneⓇ LE and competitor LE) were investigated.

The tendency with organic substances is the same as with inorganic substances. While there are no differences for substances with higher rejections such as isopropyl alcohol(IPA) and glucose, the differences are significant for substances with lower rejections such as dimethylformamide(DMF) and uric acid. The difference is particularly pronounced in the case of standard brackish water membranes(LewabraneⓇ HF and competitor).

Ç÷°½º¿Í ¿À¿°¿¡ ¹ÌÄ¡´Â ¿µÇâ(Impact on flux and fouling)
³ôÀº °¡±³µµ¿Í ±×·Î ÀÎÇÑ ÃÎÃÎÇÑ Æú¸®¾Æ¹Ìµå Ãþ ±¸Á¶¸¦ °¡Áø ¸âºê·¹ÀÎ Á¦Ç°ÀÇ °æ¿ì, Àå±â°£¿¡ °ÉÄ£ È¿°ú´Â ¾ÆÁ÷ µ¥ÀÌÅÍ·Î È®ÀÎµÈ ¹Ù ¾ø´Ù. »õ ¸âºê·¹ÀÎÀ» ¼³Ä¡ÇÑ ÈÄ °øÀå °¡µ¿ Ãʱ⿡´Â Àá±ñ À¯¼ö·®ÀÌ ÁÙ¾îµéÁö¸¸ ±Ý¹æ Á¤»ó À¯¼ö·®À¸·Î ȸº¹µÇ´Â °ÍÀ» º¼ ¼ö ÀÖ¾ú´Ù. ÀÌ¿Í ¸¶Âù°¡Áö·Î ¿À¿°À» À¯¹ßÇÏ´Â ´Ù¸¥ º¯¼öµéÀÌ ¸Å¿ì ¸¹±â ¶§¹®¿¡ °í(ÍÔ)°¡±³µµ³ª ³·Àº Ç¥¸é ÀüÇÏ°¡ ¸âºê·¹ÀÎ ¿À¿°¿¡ ¾î¶°ÇÑ ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ¿ª½Ã ¾ÆÁ÷ È®½ÇÄ¡´Â ¾Ê´Ù.

¿¹¸¦ µé¾î ÁöÇ¥¼ö¿¡¼­ ´ëºÎºÐÀÇ À¯±â¹°ÁúÀº À½ÀüÇϸ¦ ¶ì°í Àֱ⠶§¹®¿¡ À½ÀüÇϸ¦ ¶í ¸· Ç¥¸é¿¡ ÀÇÇØ Á¦°ÅµÉ °ÍÀ¸·Î ¿¹»óÇÒ ¼ö ÀÖ´Ù. ±×·¯³ª Ä®½·ÀÌ Á¸ÀçÇÏ´Â °æ¿ì ÀÌ·¯ÇÑ À¯±â¹°ÁúÀº À½ÀüÇϸ¦ ¶í ¸âºê·¹Àΰú ÇÔ²² ÄÞÇ÷º½º(complex)¸¦ Çü¼ºÇÏ¿© Ç¥¸é¿¡¼­ ½±°Ô ÈíÂøµÇ°Ô ¸¸µç´Ù. ÀÌ·¯ÇÑ ÄÞÇ÷º½ºÀÇ ºÎÂø¹° ¹ÝÀÀ(The complex fouling behavior)Àº ¾ÆÁ÷ Ç¥¸é °³ÁúÀ» ÅëÇØ ¿À¿°À» °¨¼Ò½Ãų ¼ö ÀÖ´Â ±â¼úÀû ÇØ°áÃ¥À» ãÁö ¸øÇÑ µ¥¼­ ±âÀÎÇÑ °ÍÀ̱⵵ ÇÏ´Ù.
No long-term effects on the permeate flux have been identified to date due to the higher degree of crosslinking and the resultant denser structure of the polyamide layer. Although fluxes were lower shortly after the startup of a plant fitted with a new membrane, they returned to normal after a brief period.

Similarly, it is not yet clear whether the higher degree of crosslinking or the lower surface charge affects the membranes fouling behavior, because there are too many different parameters that cause fouling. For example, most organic substances in surface water have a negative charge and are therefore expected to be repelled by a negatively charged surface. In the presence of calcium, however, these substances form a complex with the negatively charged membrane, which increases the adsorption at the surface. The complex fouling behavior is also one reason why there is still no blanket solution for significantly reducing fouling by modifying surfaces in membrane chemistry.

ÇâÈÄ ¹ßÀü¹æ¾È(Future developments)
¿À¿°Çö»óÀ» °³¼±Çϱâ À§ÇØ ÃëÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀº ³ª¼±Çü ¸âºê·¹ÀÎ ¸ðµâ ¾ÈÀÇ À¯¼ö·®À» ÃÖÀûÈ­ÇÏ´Â °ÍÀÌ´Ù. ÇÇµå ½ºÆäÀ̼­(feed spacer) °³¹ßÀº ¾Ð·Â ¼Õ½Ç·Î ÀÎÇÑ ¿¡³ÊÁö ¼Òºñ¸¦ Áõ°¡½ÃÅ°Áö ¾Ê°íµµ ¹Ì»ý¹° ¼ºÀå°ú ÀÔÀÚµéÀÇ Ä§ÂøÀ» ¾ïÁ¦½ÃÅ°´Â µ¥ ±â¿©ÇÏ°í ÀÖ´Ù. ¶û¼¼½º´Â ÀÌ¿Í °°Àº Á¾·ùÀÇ ½ºÆäÀ̼­¸¦ ÀåÂøÇÑ ¸âºê·¹ÀÎÀ» °ð ¼±º¸ÀÏ ¿¹Á¤ÀÌ´Ù.
   
 



´Ù¾çÇÑ ¿ª»ïÅõ¸· Á¦Ç°À» °æÇèÇÑ »ç¶÷À̶ó¸é ´©±¸³ª ¸âºê·¹ÀÎ È­Çаú ±¸¼º¿ä¼ÒÀÇ ¼³°è°¡ À¯»çÇÏ´õ¶óµµ ¼º´É¿¡ Â÷ÀÌ°¡ ÀÖ´Ù´Â °ÍÀ» ¾Ë°í ÀÖÀ» °ÍÀÌ´Ù. ¸âºê·¹ÀÎÀÇ °¡±³µµ´Â Á¦°ÅÀ²°ú ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÑ´Ù.

¹ßÀü¼Ò¿ë ¼ø¼ö(ultrapure water) »ý»ê °°Àº »ê¾÷¿ëµµ¿¡¼­»Ó¸¸ ¾Æ´Ï¶ó ½Ä¼ö »ý»ê¿¡ À־µµ ³ôÀº Á¦°ÅÀ²ÀÇ Á߿伺ÀÌ Á¡Á¡ Ä¿Áö°í ÀÖ´Ù. ÇâÈÄ ±ÔÁ¦°¡ ¾ö°ÝÇØÁö°í ºÐ¼® ¹æ¹ýÀÌ ¹ß´ÞÇÔ¿¡ µû¶ó ƯÈ÷ À¯±âÈ­ÇÕ¹°ÀÇ ¼öÁú°³¼±¿¡ ´ëÇÑ ¿ä±¸´Â ´õ¿í ´õ ±î´Ù·Î¿öÁú °ÍÀ¸·Î º¸ÀδÙ.
One possible way of improving fouling behavior is to optimize the flux in the spiral-wound membrane module. Feed spacer developments have already helped reduce low-flux areas. This inhibits biogrowth and the depositing of particles without increasing pressure losses and thus energy consumption. LANXESS will be unveiling an element with a spacer of this kind in the near future.

At present, extrusion technology only makes it possible to produce a structure with a variable length or width during feed spacer production. However, this would be useful for a spiral-wound membrane module, because the flux in the pressure pipe is not uniform and there is a far greater fouling tendency in the intake area than in the outlet area.

In the future, feed spacers could bring about improvements that take into account the different flux conditions in the spiral-wound membrane module in terms of both length and diameter. 3D printing technology opens up new opportunities for adapting the spacer accordingly. [¹®ÀÇ = ¶û¼¼½ºÄÚ¸®¾Æ (02)6715-5100]
 
[¡º¿öÅÍÀú³Î¡» 2015³â 7¿ùÈ£¿¡ °ÔÀç]
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [±Û·Î¹ú¼ö󸮱â¼ú] »õ·Î¿î ¸·¿©°ú ¼³ºñ °³¹ß·Î ¹°ÀçÀÌ¿ë °øÁ¤ È°¼ºÈ­
´ÙÀ½±Û [¿ì¼ö»ç·Ê] ¢ßźõȯ°æ, Çϼöó¸®Àå âÀÇÀû ¿î¿µ¹æ¾È °³¹ß¡¤Àû¿ë
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.