Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÀÚ·á½Ç > ¿ì¼ö±â¼ú¡¤Àû¿ë»ç·Ê
[±Û·Î¹ú¼ö󸮱â¼ú] ¿©°ú¡¤ºÐ¸®±â¼ú ÀÌ¿ëÇÑ ¹°¡¤¿¡³ÊÁö ½Ã³ÊÁö È¿°ú ±Ø´ëÈ­
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.09.11 Á¶È¸¼ö 1966
ÆÄÀÏ÷ºÎ

±Û·Î¹ú À̽´ ±â¼ú.pdf

[±Û·Î¹ú¼ö󸮱â¼ú] ¿©°ú¡¤ºÐ¸®±â¼ú ÀÌ¿ëÇÑ ¹°¡¤¿¡³ÊÁö ½Ã³ÊÁö È¿°ú ±Ø´ëÈ­

 Global Issue Technology


´ëü¼öÀÚ¿øÀ» °íµµÀÇ ¿©°ú¡¤ºÐ¸®±â¼ú ÀÌ¿ë
¹°°ú ¿¡³ÊÁöÀÇ ½Ã³ÊÁö È¿°ú ±Ø´ëÈ­ÇÑ´Ù


UF¡¤MF¡¤NF¡¤RO ±â¼ú ÀÌ¿ë ½Ä¼ö¡¤Ãʼø¼ö »ê¾÷¿ë¼ö »ý»ê ¹× ¹ßÀü½Ã¼³¿¡ ÀçÀÌ¿ë
±¹Á¦´ã¼öÈ­Çùȸ, ¡°¿¡³ÊÁö °¨¼Ò¡¤ºñ¿ë Àý°¨ Ãø¸é ¹°ÀçÀ̿롤Çؼö´ã¼öÈ­ ±â¼ú °¢±¤¡±


¼öÁúÀü¹®°¡ Anthony BennettÀº ¹Ì±¹ ¡ºFiltration + Separation¡» Àú³Î 2015³â 5¡­6¿ùÈ£ÀÇ ±â°í¹®¿¡¼­, ¼öó¸® ½Ã½ºÅÛ°ú Àü·Â »ý»ê ½Ã½ºÅÛ »çÀÌ ½Ã³ÊÁö È¿°ú¸¦ °üÂûÇÏ¿© ¸Ô´Â¹° »ý»ê°ú Àü·Â »ý»êÀÇ Àüü È¿À²À» °³¼±½ÃÅ°´Â ¹æ¹ý, Áï ¹Ù´å¹°°ú °°Àº ´ëü¼öÀÚ¿øÀ» ÀÌ¿ëÇÏ¿© À̵éÀ» °íµµÀÇ ¿©°ú¡¤ºÐ¸® ±â¼úÀ» ÅëÇØ Ã³¸®ÇÏ°í Àç»ç¿ëÇÏ¿© ½Ä¼ö¿ø¿¡ ´ëÇÑ ºÎ´ãÀ» ÁÙÀÌ´Â ¹æ¾ÈÀ» ¼Ò°³Çß´Ù. ±× ³»¿ëÀ» ¹ø¿ªÇß´Ù.


   
¡ã Àα¸Áõ°¡, »ê¾÷È­·Î ¹°ºÎÁ· ¹®Á¦´Â Áö¼ÓÀûÀ¸·Î Á¦±âµÇ°í ÀÖÀ¸¸ç, À̸¦ °³¼±ÇÏ°í ¾ÈÁ¤ÀûÀÎ ½Ä¼ö¿øÀ» Á¦°øÇÏ·Á´Â ±â¼ú ¹× Á¦Á¶ °øÁ¤¿¡¼­´Â ¸¹Àº ¹ßÀüÀÌ ÀÌ·ç¾îÁö°í ÀÖ´Ù.


Ķ¸®Æ÷´Ï¾Æ¡¤¾Ö¸®Á¶³ª µî ¸âºê·¹ÀÎ Ç÷£Æ® °Ç¼³ º¸ÆíÈ­
¿ì¸®´Â ´º½º¿¡¼­ ¹°ºÎÁ·°ú ±âÈÄ º¯È­¿¡ ´ëÇÑ À̽´¸¦ °è¼ÓÇؼ­ Á¢ÇÏ°í ÀÖÀ¸¸ç, ±â¼ú Àü¹®°¡¿¡°Ô¸¸ ±¹ÇÑµÇ¾î ¿Ô´ø ÀÌ·¯ÇÑ »çÇ×µéÀÌ Á¤Ä¡ ¹× °æÁ¦ ºÐ¾ß¿¡¼­µµ Åë»óÀûÀÎ À̽´°¡ µÇ°í ÀÖÀ½À» ÀνÄÇÏ°í ÀÖ´Ù. ¹°ºÎÁ·Àº Àα¸°¡ Áõ°¡ÇÏ°í »ê¾÷È­°¡ ÁøÇàµÊ¿¡ µû¶ó Áö¼ÓÀûÀ¸·Î Á¦±âµÇ´Â Áß¿äÇϸ鼭 Á¤ÇüÈ­µÈ ¹®Á¦Á¡ÀÌ´Ù. °ü½ÉÀ» µÎ°í Áö¼ÓÀûÀ¸·Î ¹®Á¦¸¦ ´Ù·ç°í ÀÖ´Â ¹Ìµð¾î ´öºÐ¿¡ Çö »óȲÀ» °³¼±ÇÏ°í ¾ÈÁ¤ÀûÀÎ ½Ä¼ö¿øÀ» Á¦°øÇÏ·Á´Â ±â¼ú ¹× Á¦Á¶ °øÁ¤¿¡¼­ ¸¹Àº ¹ßÀüÀÌ ÀÌ·ç¾îÁ³´Ù.

ƯÈ÷ Çؼö´Â ÇØ¾È Áö¿ª¿¡¼­ ¹°ºÎÁ· ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â È®½ÇÇÑ ÀÚ¿øÀ̳ª Áï½Ã »ç¿ë °¡´ÉÇÑ ±âÁ¸ÀÇ °ø±Þü°è°¡ ÁߴܵǾúÀ» ¶§´Â ÀÌ¿¡ ´ëü °¡´ÉÇÑ ¼öÀÚ¿øÀ» ÀÌ¿ëÇØ¾ß ÇÑ´Ù. ¿©±â¼­ ´ëü¼öÀÚ¿øÀ̶ó ÇÔÀº À¯±â ¶Ç´Â ¹«±â ¿À¿°¹°Áú°ú µ¶¼º ¹°Áú µîÀÇ ¿ä¼ÒµéÀ» Á¦°ÅÇÏ´Â °íµµÀÇ ±â¼ú·ÂÀÌ ÇÊ¿äÇÏ¿© ÀÌÁ¦²¯ Àû±ØÀûÀ¸·Î °³¹ßµÇÁö ¾Ê¾Ò´ø ¼öÀÚ¿øÀ» ¸»ÇÑ´Ù.

ÀÌ·¯ÇÑ ´ëü¼öÀÚ¿øÀ¸·Î´Â ¸Å¿ì ȥŹÇÑ °­¹°, ºÎ¿µ¾çÈ­ »óÅÂÀÇ È£¼ý¹° ¶Ç´Â 2Â÷ ó¸®µÈ ¹èÃâ¼ö µîÀÌ ÀÖ´Ù. ¿À´Ã³¯ ´ëü¼öÀÚ¿øÀ» ÀÌ¿ëÇÏ¿© °£Á¢ÀûÀÎ ½Ä¼ö °ø±Þ¿¡ Àû¿ë, ¹ÝµµÃ¼¿Í °°Àº Ãʼø¼ö(ultrapure water) °øÁ¤¿¡ Àû¿ë, ¶Ç´Â »ê¾÷°è Á¦Á¶ °øÁ¤ ¹× ¹ßÀü Ç÷£Æ®¿¡¼­ °í¼øµµ ¹°ÀÇ ÀÌ¿ë µî ¼º°øÀûÀ¸·Î »ç¿ëµÇ¾î ¿Ô´Ù.

¹°ºÎÁ·°ú °ü·ÃµÈ ¹®Á¦´Â Á¡Á¡ Áõ°¡ÇÏ°í ÀÖ´Â ±Û·Î¹ú ¿¡³ÊÁö ¼Òºñ À̽´¿Í À¶ÇյǾî ÀÖ´Ù. ¹°ÀÇ »ç¿ë°ú ¿¡³ÊÁö ¼Òºñ´Â ±ä¹ÐÇÑ »ó°ü °ü°è¸¦ °¡Áö´Âµ¥, ¹°ÀÇ »ý»ê¿¡´Â ¾öû³­ ¾çÀÇ ¿¡³ÊÁö¸¦ ÇÊ¿ä·Î ÇÏ°í Àü±â »ý»ê¿¡ ¿ª½Ã »ó´çÇÑ ¾çÀÇ ¹°À» ÇÊ¿ä·Î ÇÑ´Ù. µû¶ó¼­ ½Ä¼ö¸¦ ó¸®ÇÏ´Â °øÁ¤ ÇØ°á ¹æ¹ý¿¡¼­ µ¿½Ã¿¡ ¿¡³ÊÁö º¸Á¸ÀÇ Çʿ伺µµ °í·ÁÇÏ¿© °ËÅäµÇ¾î¾ß ÇÑ´Ù.

¼öÀÚ¿øÀ» ÀçÀÌ¿ëÇÏ´Â ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸¹Àº ¼³°è ¿£Áö´Ï¾îµéÀÌ ÇϳªÀÇ ¸ñÀûÀ¸·Î¸¸ ¹°ÀÇ È¿°úÀû »ç¿ëÀ» ÃßÁøÇßÀ¸³ª ÀÌÁ¦´Â È¿°úÀûÀΠó¸® ±â¼úÀÇ °³¹ß·Î Çϳª ÀÌ»óÀÇ ¸ñÀûÀ» Á¦°øÇÏ´Â ÇØ°áÃ¥À» ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú´Ù. Áï, Çؼö´ã¼öÈ­ ±â¼ú ¹ßÀüÀ¸·Î Çؼö¸¦ ¹Ù·Î ½Ä¼ö·Î ¹Ù²Ù°Å³ª ¶Ç ´Ù¸¥ Ãß°¡ 󸮰úÁ¤À» °ÅÃÄ »ê¾÷¿ë¼ö·Îµµ »ç¿ë °¡´ÉÇϵµ·Ï ÇÏ´Â °æÁ¦ÀûÀÎ ¹æ¹ýÀÌ °¡´ÉÇØÁ³´Ù.
 
We read about water scarcity and climate change issues in the news regularly. What used to be a topic restricted to technical specialists has now become a common focus for conversation in political and economic arenas. Water scarcity is a significant and well documented problem that continues to cause concern as the human population grows and industrialisation increases. But all the media attention has led to many advances, both in terms of technology and in manufacturing processes, to improve the situation and provide reliable sources of drinking water.

Seawater provides an obvious resource to tackle the problem of water scarcity, especially and obviously in coastal areas, but alternative sources of water can also be utilised where a readily available conventional supply is unavailable. We can define alternative sources of water as those which have not been significantly exploited, due to the need for advanced technology to remove elements such as organic and inorganic pollutants and toxins.

Examples of alternative sources of water include highly turbid river water, eutrophic lake water or secondary treated effluent. Alternative sources have been successfully used for indirect drinking applications, ultrapure water processes such as semiconductors or high purity water applications in manufacturing industry or power generation systems and we describe examples of these applications below.

Compounding the problems associated with water scarcity is the expanding global energy consumption issue. Water usage and energy consumption are intimately linked - the production of water requires a significant amount of energy and the production of energy requires a significant amount of water. As a result, process solutions to produce drinking water must also take into account the need for energy conservation.

Advances in water reuse technologies have allowed designers and engineers to make better use of water that has already served one need but with effective treatment could go on to serve one or more additional purposes. However, advances in desalination technology can make it more economical to turn seawater directly into drinking water or, with further treatment, into water for industrial purposes.


   
¡ã Çؼö´ã¼öÈ­ ±â¼ú ¹ßÀüÀ¸·Î ¹Ù´å¹°À» ¹Ù·Î ½Ä¼ö·Î ¹Ù²Ù°Å³ª ¶Ç´Ù¸¥ Ãß°¡ 󸮰úÁ¤À» °ÅÃÄ »ê¾÷¿ë¼ö·Îµµ »ç¿ë °¡´ÉÇϵµ·Ï ÇÏ´Â °æÁ¦ÀûÀÎ ¹æ¹ýÀÌ °¡´ÉÇØÁ³´Ù. »çÁøÀº ½Ì°¡Æ÷¸£ ÃÖ´ë ÇؼöÈ­´ã¼öÈ­ Ç÷£Æ®ÀÎ Åõ¾Æ½ºÇÁ¸µ Çؼö´ã¼öÈ­ ½Ã¼³.

¹°¼øȯ »çÀÌŬ(Hydrological cycle)
±×·¯³ª Àüü ¹°¼øȯ »çÀÌŬÀ» °í·ÁÇÏÁö ¾Ê°í ¼ö󸮡¤Æó¼öó¸®ÀÇ °³º°ÀûÀÎ ÀÌ¿ë¿¡¸¸ ÁýÁßÇϸé ȯ°æÀÇ Áö¼ÓÀ¯Áö ³ë·ÂÀ» Áõ°¡½ÃÅ°´Â ±âȸ¸¦ °£°úÇÒ ¼ö ÀÖ´Ù. ÀÌ¿¡ ¹°¼øȯ °úÁ¤À» ÅëÇÕÀûÀÎ ¹æ¹ýÀ¸·Î ´Ù·ç¾î °¢ ºÐ¾ß¸¦ º°°³ÀÇ °ÍÀ¸·Î ÁýÁßÇÏ¿© ¿¬°ü¼ºÀÌ ¾ø´Â °³³äÀ¸·Î ÀνÄÇÏ´Â ¿À·ù¸¦ ÇÇÇØ¾ß ÇÑ´Ù.

´ëü¼öÀÚ¿ø ÀÀ¿ëÀÇ È¿°ú¿¡ ´ëÇÑ »çÇ×Àº Áö³­ 10³â µ¿¾È Àß ÀÌÇØµÇ¾î ¿Ô´Ù. ¹°¼øȯ »çÀÌŬ¿¡¼­ ¹°ÀÇ ¼Òºñ¸¦ °ü¸®ÇÏ°í Á¶ÀýÇÏ´Â Á÷Á¢ÀûÀΠåÀÓÀº Áö¹æ Á¤ºÎ, ±â°ü, ±×¸®°í ±ÔÁ¦±â°ü ³»¿¡ ÀÖ´Ù. À̵éÀÇ ¿ì¼± ¸ñÇ¥´Â ¼Òºñ·®À» ÁÙÀÌ°í, ¼ö¿ä¸¦ Á¶Á¤ÇÏ°í, ´©¼ö ¹× Áõ¹ß¿¡ µû¸¥ ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ¿© °á±¹ ¹°°ü¸® ÇÁ·Î¼¼½ºÀÇ È¿À²¼ºÀ» ÃÖ´ë·Î ÇÏ´Â °ÍÀÌ´Ù.

Áö±¸ Àüü·Î º¸¸é ¹°¼øȯÀº ¹Ù´Ù¿Í À°Áö¿¡¼­ÀÇ Áõ¹ß, ±¸¸§ÀÇ Çü¼º, °­¼öÀÇ ÇüÅÂ·Î½á ´Ù½Ã ÁöÇ¥¿¡ ¶³¾îÁö°í °­¹°·Î ¸ð¾ÆÁ® ¹Ù´Ù·Î Èê·¯ µé¾î°¡°Å³ª ½Ä¼ö·Î »ç¿ë ±×¸®°í »ç¿ë ÈÄ µµ½Ã·ÎºÎÅÍ Æó¼ö°¡ ¹èÃâµÇ´Â °úÁ¤À¸·Î ¼³¸íµÈ´Ù. ¿ì¸®´Â ÀÌ·¯ÇÑ »ç¿ë Áֱ⸦ ±¹ÁöÀûÀÎ °üÁ¡À¸·Î ÁÙ¿©, ó¸®µÈ Æó¼ö°¡ ÀαÙÁö¿ªÀÇ ¼öó¸® ½Ã¼³¿¡¼­ ó¸®µÇ¾î ½Ä¼ö·Î Àç»ç¿ëµÇ°Å³ª À½¿ë¼ö ¼öÁØÀ¸·Î ó¸®µÈ Æó¼öÀÇ °£Á¢ÀûÀÎ »ç¿ë, Áï ÁöÇϼö ´ë¼öÃþ¿¡ º¸Ãæ ¿ëµµ·Î »ç¿ëÇÏ´Â °Í µîÀÌ °í·ÁµÇ¾î¾ß ÇÑ´Ù.

Çؼö¸¦ Áï½Ã »ç¿ëÇÏÁö ¸øÇÏ´Â Áö¿ªÀÇ °æ¿ì, ¹ßÀü¼Ò Ç÷£Æ®´Â ´ëüÀÚ¿øÀ¸·ÎºÎÅÍ °ø±Þ¹Þ´Â µµ½Ã ±Ù±³ÀÇ Æó¼öó¸®Àå ¹× Á¤¼öÀå ÁÖº¯¿¡ ±ÙÁ¢ÇÑ °Å¸®¿¡ À§Ä¡ÇÏ´Â °ÍÀ» º¼ ¼ö ÀÖ´Ù. ¶§¹®¿¡ ó¸®µÈ ó¸®¼ö °³³äÀÌ ¾Æ´Ñ ¹ßÀü¼Ò¿¡¼­ÀÇ ³Ã°¢¼ö ¹× °øÁ¤¼öÀÇ ´ëü¼öÀÚ¿øÀ¸·Î »ç¿ëÀ» °í·ÁÇÒ ¼ö ÀÖ´Ù. À̸¦ À§Çؼ­´Â µµ½ÃÀÇ ¹°¼øȯ »çÀÌŬ Àüü¸¦ ÅëÇÕÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ¾î¾ß ÇÑ´Ù. µû¶ó¼­ ¹ßÀü°ú ¼öó¸® °øÁ¤À» ÇϳªÀÇ °ü¸®Ã¼°è·Î ÅëÇÕÇÏ¸é ¹°ÀÇ ¿À¿°À» ÁÙÀ̰ųª ³ôÀº ¼öÁúÀÇ ¸Ô´Â¹°À» °è¼Ó º¸À¯ÇÏ´Â µîÀÇ ¸¹Àº ÀåÁ¡À» ¾ò°Ô µÈ´Ù.

But the opportunities for increasing environmental sustainability can be overlooked by concentrating on the separate applications of water and wastewater treatment without considering the whole hydrological cycle, which needs to be managed in an integrated way so we avoid focusing on these disciplines as unrelated subjects. The benefits of utilising alternative water sources have become better understood over the last decade.

The responsibility for the management and control of water consumption throughout the hydrological cycle typically rests with local governments, agencies and their regulators. Their priorities are to reduce waste, control demand, minimise leakage and evaporation losses and maximise the efficiency of the water management process.

On a planetary scale, the hydrological cycle involves evaporation from sea and land, the formation of clouds and then the water falling back to Earth as precipitation, being collected in rivers and entering the sea again before being intercepted for use as drinking water and discharged from municipalities as treated effluent. We can think of the concept of shrinking this cycle and just consider the local perspective, with treated wastewater being recycled into drinking water in adjacent treatment plants, or planned indirect potable use of wastewater, where treated wastewater is used to replenish groundwater. The groundwater is then used as a drinking water source.

Often, when seawater is not readily available, we find power generation facilities located on the outskirts of municipalities along with wastewater treatment facilities and drinking water treatment systems fed from alternative sources. We could consider using these alternative sources of water for cooling and process water in the power station rather than using treated water but this requires us to be able to manage the hydrological cycle for the city as a whole. If we integrate power generation and water treatment processes as a single management activity, we can focus on various benefits including reduced aqueous pollution into receiving waters and retention of high quality water for drinking supply.


   
¡ã ¹°ºÎÁ·°ú °ü·ÃµÈ ¹®Á¦´Â Á¡Á¡ Áõ°¡ÇÏ°í ÀÖ´Â ±Û·Î¹ú ¿¡³ÊÁö ¼Òºñ À̽´¿Í À¶ÇյǾî ÀÖ´Ù. »çÁøÀº ¹æ±Û¶óµ¥½Ã º¸¶ó±× º¯Àü¼Ò Àü°æ.

ÇÏÀ̺긮µå ¹æ¹ý(Hybridisation)
ÇÏÀ̺긮µå ¹æ¹ýÀº ¼­·Î ´Ù¸¥ ´ÜÀ§º° ó¸® ¹æ¹ýÀÇ ÀåÁ¡À» »ì¸° ½Ã³ÊÁö¿¡ ÀÇÇÏ¿© Àüü ½Ã½ºÅÛÀÇ È¿À²À» ³ôÀÌ´Â Á¢±Ù ¹æ¹ýÀÌ´Ù. µµ½ÃÀÇ ¹°°ü¸® ¸ÞÄ«´ÏÁò¿¡¼­ ¹ãÀ̳ª ¿©¸§ µî ¼ö¿ä°¡ ÀûÀº ±â°£¿¡ ¹ß»ýÇÏ´Â ¿¡³ÊÁöÀÇ ÀúÈ¿À² ±â°£À» ÁÙÀÓÀ¸·Î½á ¹ßÀü ½Ã½ºÅÛÀÇ ¿î¿µ È¿À²¼ºÀ» Áõ°¡½Ãų ¼ö ÀÖÀ¸¸ç, ÀÌ·¸°Ô »ç¿ëÇÏÁö ¾ÊÀº ¹ßÀü ¿ë·®Àº ÃæºÐÇÑ ¹°¼ö¿ä ¶Ç´Â ÀúÀåÁ¶°¡ ÁغñµÇ¾î ÀÖÀ¸¸é ¼öó¸® ½Ã½ºÅÛ È¿À²À» ³ôÀ̴µ¥ »ç¿ëÀÌ °¡´ÉÇÏ´Ù.

¶ÇÇÑ ¿¡³ÊÁö ¼ö¿ä°¡ ³·Àº ±â°£ ¶Ç´Â »ý»ê·®ÀÌ ¸¹¾ÆÁö´Â ±â°£ µ¿¾È ¹ß»ýµÇ´Â dz·Â¡¤Å¾çÀüÁö ½Ã½ºÅÛ µî °£ÇæÀûÀ¸·Î Àç»ç¿ë °¡´ÉÇÑ ¹æ¹ý¿¡ ÀÇÇØ ¸¸µé¾îÁø À׿© ¿¡³ÊÁö´Â ¼öó¸® °øÁ¤¿¡ Á÷Á¢ »ç¿ëµÉ ¼ö ÀÖ´Ù. Áï, ÇÏÀ̺긮µå ¹æ¹ýÀ¸·Î ÀÌ·¯ÇÑ »ç¿ëµÇÁö ¾ÊÀº ¿¡³ÊÁö ¹ß»ý·®À» ÀüüÀûÀÎ ¹°°ü¸® ¸ÞÄ«´ÏÁò¿¡ Æ÷°ýÀûÀ¸·Î ÀÌ¿ëÇÒ ¼ö ÀÖ´Ù. °èȹµÈ °£Á¢ÀûÀÎ ½Ä¼ö·ÎÀÇ ÀÌ¿ëÀ» À§ÇÑ Æó¼öó¸® »ç·Ê¸¦ º¸¸é ¼ö¿ä·®Àº ÇÏ·çÀÇ ±â°£ µ¿¾È ´Þ¶óÁú ¼ö ÀÖ´Ù. ¼ö¿ä°¡ ³·Àº ±â°£ µ¿¾È¿¡´Â ó¸®µÈ ¹°ÀÌ ÁöÇϼö ¶Ç´Â Àú¼öÁö¿¡ ºü¸¥ ¼Óµµ·Î ¸¹Àº ¾çÀÌ ½×ÀÌ°Ô µÇ¾î ¿°ºÐÀÌ ÀÖ´Â Áö¿ªÀÇ ´ë¼öÃþÀ̳ª ÁöÇ¥¼ö °ø±Þ¶óÀο¡ º¸ÃæµÉ ¼ö ÀÖ´Ù.

ÁöÇϼöÀÇ °úµµÇÑ ÃßÃâ·Î ÀÎÇÑ ÇؼöÀÇ À¯ÀÔÀ» Á¶ÀýÇϰųª, ÇâÈÄ ±âÈÄ º¯È­·Î ÀÎÇØ Çؼö¸éÀÌ Áõ°¡ÇÏ´Â °Í¿¡ ´ëóÇÒ ¼ö ÀÖ´Â ÇØ°áÃ¥ÀÌ µÇ±âµµ ÇÑ´Ù. ¶ÇÇÑ ÃÖ´ë»ý»êÀ¸·Î ÆǸŵÇÁö ¾ÊÀº Àü±â¿¡³ÊÁö ȤÀº ÃÊ°ú »ý»êµÈ Àç»ý¿¡³ÊÁö¸¦ ¼ö¿ä°¡ ÀûÀº ±â°£¿¡ ûÁ¤ÇÑ ÁöÇϼö¿øÀ¸·Î º¯È¯ÇÏ¿© ÇâÈÄ ¼ö¿ä°¡ ¸¹Àº ±â°£¿¡µµ »ç¿ëÀÌ °¡´ÉÇÏ´Ù. Áï, È¿°úÀûÀ¸·Î ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í ±×¿¡ µû¶ó ÁöÇϼö ¶Ç´Â Àú¼öÁö ¹°À» »ç¿ëÇÏ´Â °ÍÀº ¹èÅ͸® »ç¿ëÀÇ ¿ø¸®¿Í °°Àº °³³äÀ̶ó°í º¼ ¼ö ÀÖ´Ù.

Hybridisation is an approach to increase the efficiency of an overall system by taking advantage of the synergy between different unit process solutions. In a municipal water management plan, the efficiency of power generation systems could be increased by reducing the inefficient period which occurs during periods of low demand such as during the night or in the summer months. This unused power generation capacity could be used to increase water treatment rates if there is sufficient water demand or storage capacity.

Also, any surplus energy generated from intermittent renewable sources, such as wind or solar photovoltaic systems, during periods of low demand and high production could be directed towards water treatment processes. Hybridisation could be used to exploit this unused capacity as part of a comprehensive water management plan. Using the example of treating wastewater for planned indirect drinking use, demand periods would tend to vary on diurnal cycles. During the low demand period, water could be ¡°banked¡± into groundwater or reservoir storage at a high rate to create fresh water aquifers in brackish or saline zones, or supplement surface water supplies.

Also, where appropriate, this could help control seawater ingress due to over abstraction of groundwater or, in the future, help combat rising seawater levels expected due to climate change. We can argue that we could then effectively convert unsold off peak electricity or excess renewable production into valuable fresh groundwater in the low demand period, for future use in the high demand period, hence effectively storing energy and using the groundwater or reservoir ¡®bank¡¯ like a battery.

´ã¼öÈ­ ±â¼ú(Desalination technology)
Áõ¹ß¹ýÀº ¸âºê·¹ÀÎ °øÁ¤, ¶Ç´Â À̵éÀÇ È¥ÇÕ±â¼úÀ» ÅëÇØ Çؼö¸¦ ´ã¼öÈ­ ÇÒ ¼ö ÀÖ´Ù. 19¼¼±â ÈĹÝ, ´ã¼öÈ­ ±â¼ú¿¡¼­ ù ¹ø° Áß¿äÇÑ ±â¼ú°³¹ßÀº ´ÙÁßÈ¿¿ë Áõ¹ß¹ý(Multiple Effect Distillation, MED)ÀÌ´Ù. ù ¹ø° Áõ¹ß±â(effect)¿¡¼­ °üÀ» ÅëÇØ È帣´Â ¿¹¿­µÈ °ø±Þ¼ö°¡ Áõ±â¿¡ ÀÇÇØ °¡¿­µÇ°í À¯ÀÔ¼ö¿¡ Æ÷ÇÔµÈ ¹°ÀÇ ÀϺΰ¡ Áõ¹ßÇÏ°Ô µÈ´Ù. ¿°¼öÀÇ Áõ¹ß·Î °¢ Áõ¹ß±â È帧¿¡¼­ ¹ß»ýÇÑ ¹°ÀÇ Áõ±â´Â ´ÙÀ½ Áõ¹ß±â·Î È帣°í, ¿©±â¼­ ´õ ³·Àº ¿Âµµ¿¡¼­ ¿­À» °¡ÇÏ¿© Ãß°¡ÀûÀÎ Áõ¹ßÀ» À¯¹ßÇÑ´Ù.

±×¸®°í Áõ±â°¡ ÀÀÃàÇϸ鼭 Àá¿­À» ¹æÃâÇÏ¿© ¿°¼öÀÇ ÀϺθ¦ ´Ù½Ã Áõ¹ß½ÃŲ´Ù. ÀÌ·¯ÇÑ Áõ¹ß-ÀÀÃà(Evaporation-condensation) °øÁ¤Àº Áõ¹ß±â¿Í Áõ¹ß±â »çÀÌ¿¡¼­ ¹Ýº¹µÈ´Ù. À̸¦ ´ÙÁßÈ¿¿ë(Multiple effect)À¸·Î Ç¥Çö, °¢°¢ÀÇ Áõ¹ß±â´Â ¿¬¼ÓÀûÀ¸·Î ³·¾ÆÁö´Â ¾Ð·Â°ú ¿Âµµ Á¶°Ç¿¡¼­ ÀÛµ¿ÇÑ´Ù.

1960³â´ë Á߹ݿ¡´Â ´Ù´Ü Ç÷¡½Ã¹ý(Multistage Flash, MSF) Áõ·ù°¡ ³Î¸® »ç¿ëµÇ¾ú´Ù. MSF¿¡¼­ ¿°¼ö(ÀÌÈÄ Àç»ç¿ë È帧°ú ¼¯ÀÌ°Ô µÊ)´Â ÃÖ°í ¿°¼ö¿Âµµ(Maximum top Brine Temperature, TBT)¿¡ µµ´ÞÇÒ ¶§±îÁö ¾Ð·Â°ú ¿­À» ¹Þ´Â´Ù. °¡¿­µÈ ¿°¼ö°¡ ¹°ÀÇ Æ÷È­ Áõ±â¾Ðº¸´Ù ¾à°£ ³·Àº ¾Ð·ÂÀÌ À¯ÁöµÇ´Â ½ºÅ×ÀÌÁö(stage)·Î Èê·¯ µé¾î°¡¸é ±× ¼Ó¿¡ ÀÖ´ø ¹°ÀÇ ÀϺΰ¡ Áõ±â·Î Áõ¹ßÇÑ´Ù. Áõ¹ßÇÑ Áõ±â´Â ºÐ¹« Á¦°ÅÀåÄ¡¸¦ °ÅÃÄ ¿­ ±³È¯ °üÀÇ ¿ÜºÎ Ç¥¸é¿¡¼­ ÀÀÃàÇÑ´Ù. ÀÀÃàµÈ ¾×ü´Â º°µµÀÇ Æ®·¹ÀÌ(trays)·Î ¶³¾îÁ® ÃÖÁ¾ »ý»ê¼ö°¡ µÈ´Ù.

Áõ¹ßÇÏÁö ¾ÊÀº ¿°¼ö´Â µÎ ¹ø° ½ºÅ×ÀÌÁö¿¡ µé¾î°¡ ´õ ³·Àº ¿Âµµ¿¡¼­ ´Ù½Ã Áõ¹ßÇÏ¿© °è¼ÓÇؼ­ »ý»ê¼ö¸¦ ¸¸µç´Ù. ³Ã°¢µÈ ¿°¼ö¿Í ³Ã°¢µÈ Áõ·ù¾× ¸ðµÎ Ç÷£Æ® ¼³ºñ¿¡¼­ ºí·Î¿ì´Ù¿î(blow-down) ¿°¼ö¿Í »ý»ê¼ö·Î½á ÃÖÁ¾ ¹æÃâµÉ ¶§±îÁö Áõ¹ß-³Ã°¢(Flashing-cooling) °øÁ¤ÀÌ °¢°¢ÀÇ ½ºÅ×ÀÌÁö¿¡¼­ ¹Ýº¹µÈ´Ù.

Desalination of seawater can be achieved by using thermal or membrane processes, or a hybrid combination of the two types. In the late 19th century, the first major technical advance in desalination technology was the development of the multiple effect distillation (MED) process. Here, pre-heated feed water flowing over tubes in the first effect is heated by prime steam, resulting in evaporation of a fraction of the water content of the feed.

The water vapour generated by brine evaporation in each effect flows to the next effect, where heat is supplied for additional evaporation at a lower temperature. There the vapour condenses, giving up its latent heat to evaporate an additional fraction of water from the brine. The process of evaporation-plus-condensation is repeated from effect to effect, hence the term ¡®multiple effect.¡¯ Each effect operates at successively lower pressure and temperature.

In the mid-1960s multistage flash (MSF) distillation became popular. In MSF, seawater (after mixing with the recycle stream) is pressurised and heated to the maximum top brine temperature(TBT). When the heated brine flows into a stage maintained at slightly below the saturation vapour pressure of the water, a fraction of its water content flashes into steam. The flashed vapour passes through a mist eliminator and condenses on the exterior surface of heat transfer tubing.

The condensed liquid drips into trays as a product water. The unflashed brine enters a second stage where it flashes again to vapour at a lower temperature, producing a further quantity of product water. The flashing-cooling process is repeated from stage to stage until both the cooled brine and the cooled distillate are finally discharged from the plant as blow-down brine and product water.


   
¡ã Áõ¹ß¹ýÀº ¸âºê·¹ÀÎ °øÁ¤, ¶Ç´Â À̵éÀÇ È¥ÇÕ±â¼úÀ» ÅëÇØ Çؼö¸¦ ´ã¼öÈ­ ÇÒ ¼ö Àִµ¥, 19¼¼±â ÈĹÝ, ´ã¼öÈ­ ±â¼ú¿¡¼­ ù ¹ø° Áß¿äÇÑ ±â¼ú°³¹ßÀº ´ÙÁßÈ¿¿ë Áõ¹ß¹ý(MED)ÀÌ´Ù. »çÁøÀº µÎ»êÁß°ø¾÷ÀÇ Áõ¹ß¹ýÀ» »ç¿ëÇÑ Çؼö´ã¼öÈ­ Ç÷£Æ®.

¿ª»ïÅõ ±â¼ú(Reverse Osmosis)
MSF(´Ù´Ü Ç÷¡½Ã¹ý)°¡ °³¹ßµÉ ÁîÀ½ ÃÖÃÊÀÇ ¿ª»ïÅõ(RO) ¸âºê·¹ÀÎÀÌ Á¦À۵Ǿú´Ù. RO¿¡¼­´Â ¿ø¼ö°¡ À¯ÀÔ¼öÀÇ »ïÅõ¾Ð ÀÌ»ó ¾Ð·Â¿¡¼­ ¸âºê·¹ÀÎ ¸éÀ» ±âÁØÀ¸·Î À¯ÀÔ¼ö ÂÊ¿¡¼­ »ý»ê¼ö ÂÊÀ¸·Î È帣°Ô µÇ¸ç, À̶§ »ý»ê¼ö¸¦ ¡®Åõ°ú¼ö(permeate)¡¯ ¶ó°í ºÎ¸¥´Ù. ÀÌ´Â ÀÚ¿¬ÀûÀÎ »ïÅõ¾Ð È帧¿¡ ¹Ý´ëµÇ´Â °ÍÀ¸·Î ¼Ò±Ý À̿¹°ÁúÀº ³óÃà¼ö ä³Î ÂÊ¿¡ ³óÃàµÈ ÇüÅ·ΠÃàÀûµÈ´Ù. ´ã¼öÈ­ Ãʱ⿡´Â ¿ëÀû½Ä ÆßÇÁ(positive displacement pump)¿Í ¿ø½É ÆßÇÁ°¡ ¿ª»ïÅõ ½Ã¼³¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁöÀÇ 100%¸¦ °ø±ÞÇß´Ù.

±×·¯³ª ¿¡³ÊÁö ȸ¼ö ºÐ¾ßÀÇ °³¹ß·Î ¿¡³ÊÁö »ç¿ëÀÇ °³¼±ÀÌ ÀÌ·ç¾îÁ³´Ù. ¿ª»ïÅõ ½Ã½ºÅÛ¿¡¼­ »ç¿ëµÈ ¿©ºÐÀÇ ¿¡³ÊÁö´Â ´Ù½Ã ȸ¼öÇÏ¿© »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ÀÌ·¯ÇÑ Àç»ç¿ëÀ¸·Î ÇؼöÀÇ »ïÅõ¾Ð ÀÌ»óÀ¸·Î ½Â¾ÐÇÏ´Â µ¥ ÇÊ¿äÇÑ ¿¡³ÊÁöÀÇ 25¡­30%±îÁö ¾ò°Ô µÇ¾î ´ã¼öÈ­ ½Ã¼³ÀÇ ÃÑ ¿¡³ÊÁö ¿ä±¸·®À» Çö°ÝÇÏ°Ô ³·Ãâ ¼ö°¡ ÀÖ¾ú´Ù. ¿À´Ã³¯ °ÅÀÇ ¸ðµç ¸âºê·¹ÀÎ ±â¹Ý ´ã¼öÈ­ ½Ã¼³Àº ´Ù¾çÇÑ ÇüÅÂÀÇ ¿¡³ÊÁö ȸ¼öÀåÄ¡¸¦ »ç¿ëÇÑ´Ù. ÆßÇÁ, ¿¡³ÊÁö ȸ¼ö±â¼ú ¹× ¸âºê·¹ÀÎ ¼ÒÀç±â¼úÀÇ ±â¼ú°³¹ßÀÌ ¿îÀüºñ¿ëÀ» ´õ¿í ³·Ãߴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ´Ù.

´ã¼öÈ­ ºñ¿ëÀ» ³·Ãß´Â µ¥ ¶Ç ´Ù¸¥ Áß¿äÇÑ Ãø¸éÀº ¸âºê·¹ÀÎ ±â¹Ý ¿ª»ïÅõ ½Ã½ºÅÛÀÇ ÅõÀÚºñ¿ëÀ» ÁÙÀÌ´Â °ÍÀÌ´Ù. ÀÌ ºñ¿ëÀº ¹°ÀÇ »ý»êºñ¿ë°ú Á÷Á¢ÀûÀÎ °ü°è°¡ ÀÖÀ¸¸ç, ´ëºÎºÐÀÇ ½Ã¼³µéÀÌ ÀÚº»ÅõÀÚ ÆÄÀ̳½½Ì(financing)À¸·Î ÅõÀÚºñ¸¦ ¸¶·ÃÇϸç Ãʱâ ÅõÀÚºñ¿ëÀº ¹°ÀÇ »ý»ê¿¡ ¼Ò¿äµÇ´Â ¸ðµç ºñ¿ëÀ¸·Î ºÐÇÒ »óȯµÇ±â ¶§¹®ÀÌ´Ù. ´õ¿í È¿À²ÀûÀÎ ¿¡³ÊÁö ȸ¼öÀåÄ¡¿Í »õ·Î¿î Á¾·ùÀÇ ¸âºê·¹ÀÎ °³¹ß, ±×¸®°í ¿ª»ïÅõ ¸âºê·¹Àο¡¼­ÀÇ Ã³¸®À¯·® Áõ°¡ µîÀ¸·Î ÀÎÇØ ¾ÕÀ¸·Î´Â ó¸®µÈ ¹°ÀÇ ´ÜÀ§´ç ¿¡³ÊÁö ºñ¿ëÀº °è¼ÓÇؼ­ °¨¼ÒÇÒ °ÍÀÌ´Ù. ÇÑÆí, »õ·Î¿î ¸âºê·¹ÀÎÀÇ ÃâÇöÀ¸·Î ¿À¿°¿¡ ´ëÇÑ ³»¼ºÀº ´õ¿í °³¼±µÉ °ÍÀÌ´Ù.

¿ª»ïÅõ ½Ã½ºÅÛÀ¸·Î À¯ÀԵǴ ¿ø¼ö´Â UV »ì±Õ°øÁ¤ ¹× ÇÑ¿Ü¿©°ú(UF), Á¤¹Ð¿©°ú(MF), ³ª³ë¿©°ú(NF) µîÀÇ ¸âºê·¹ÀÎ ±â¼úÀ» ÀÌ¿ëÇÑ Àüó¸® °úÁ¤À» °ÅÃÄ ÆĿ︵ ¹°Áú µî ¿À¿°¹°À» ÁÙÀ̰ųª Á¦°ÅÇÑ´Ù. ÇÑÆí, ÇÑ¿Ü¿©°ú¿Í Á¤¹Ð¿©°ú ±â¼úÀº ¸· »ý¹° ¹ÝÀÀ±â(MBR) ½Ã½ºÅÛ°ú °°ÀÌ »ç¿ëµÉ ¼ö ÀÖÀ¸¸ç, ³ôÀº À¯±â¼º ÆĿ︵(fouling) ¹°ÁúÀ» ÇÔÀ¯ÇÑ À¯ÀÔ¼ö´Â È£±â¼º »ý¹°¹ÝÀÀÁ¶(aerobic bioreactor)¿¡¼­ 󸮵Ǿî ÃÑ ºÎÀ¯¼º °íÇü¹°(Total Suspended Solids, TSS) ¹× È­ÇÐÀû »ê¼Ò¿ä±¸·®(Chemical Oxygen Demand, COD) ¹°ÁúÀÌ Á¦°ÅµÇ¸ç MBR Á¶¿¡¼­´Â º°µµÀÇ ¿ÜºÎ¿¡ ¼³Ä¡µÇ´Â »çÀÌµå ½ºÆ®¸²(side stream) ±¸¼ºÀ̳ª ¹ÝÀÀÁ¶ ³»¿¡ ħÁöµÈ ÇüÅÂÀÇ ¸âºê·¹ÀÎ ½Ã½ºÅÛÀ¸·Î ÁÖ·Î ÀÔÀÚ¼º ¹°ÁúÀÌ Á¦°ÅµÈ´Ù.

At the same time as MSF was being developed the first reverse osmosis(RO) membrane was produced. In RO, treated water termed ¡®permeate¡¯ passes from the feed to the product side of the membrane when a pressure exceeding the osmotic pressure of the feed water is applied. This ¡®reverses¡¯ the natural osmotic flow and concentrates salt ions into a waste concentrate stream. In the early years of desalination, positive displacement and centrifugal pumps provided 100% of the energy to power a seawater RO plant, but innovations in the field of energy recovery have improved efficiency.

Waste energy from RO systems can be recovered and can account for 25¡­30% of the energy required to overcome the osmotic pressure of seawater. This lowers the total energy requirement of desalination plants dramatically. Nearly all membrane-based desalination plants today utilise some form of energy recovery. Future innovations in pumping and energy recovery, combined with innovations in membrane technology, hold the key to lowering the operating cost of desalination even further.

An equally important aspect of lowering the costs of desalination is the reduction made in the capital cost of membranebased RO systems. This cost bears a direct relationship to the overall cost of water, as most plants are financed and their initial costs are amortised into the overall cost of water produced. It is likely over the coming years that we will see a continuing reduction in energy costs per unit treated water due to more efficient energy recovery systems, the introduction of new types of membranes and higher fluxes through the RO membranes. It is also likely that new types of membranes will be far more fouling resistant.

Water entering RO systems can be pretreated to reduce or eliminate the potential for fouling using other technologies such as ultra-violet(UV) sterilisation and the membrane technologies ultrafiltration(UF), microfiltration(MF) and nanofiltration(NF). UF and MF technologies can be incorporated into membrane bioreactor(MBR) systems. Here, a feed supply high in organic fouling potential can be treated in an aerobic bioreactor to reduce total suspended solids and chemical oxygen demand, with the solids removed in a separate ¡®side-stream¡¯ or an integrated membrane system.


   
¡ã ¿À´Ã³¯ °ÅÀÇ ¸ðµç ¸âºê·¹ÀÎ ±â¹Ý ´ã¼öÈ­ ½Ã¼³Àº ´Ù¾çÇÑ ÇüÅÂÀÇ ¿¡³ÊÁö ȸ¼öÀåÄ¡¸¦ »ç¿ëÇϴµ¥ ÆßÇÁ, ¿¡³ÊÁö ȸ¼ö±â¼ú ¹× ¸âºê·¹ÀÎ ¼ÒÀçÀÇ ±â¼ú°³¹ß·Î ¿îÀüºñ¿ëÀ» ´õ¿í ³·Ãߴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ´Ù.

ÁÖ¸ñÇÒ ¸¸ÇÑ »ç·Ê(Notable examples)
±¹Á¦´ã¼öÈ­Çùȸ(International Desalination Association, IDA)´Â ÇâÈÄ ¼ö½Ê ³â °£ MBR, UF, MF, NF, RO ±â¼úÀ» È¿À²ÀûÀ¸·Î »ç¿ëÇÏ¿© ¹°ÀçÀÌ¿ë ÇÁ·ÎÁ§Æ®ÀÇ ¼³Ä¡ ¼ö·®°ú ó¸® ±Ô¸ð°¡ ±Ø´ëÈ­ ¹× Áõ°¡µÉ °ÍÀ¸·Î ¿¹»óÇÏ°í ÀÖÀ¸¸ç, ¿¡³ÊÁö °¨¼Ò ¹× ºñ¿ë Àý°¨ Ãø¸é¿¡¼­ °íµµÀÇ ¹°ÀçÀÌ¿ë ±â¼ú°ú Çؼö´ã¼öÈ­ ±â¼úÀÇ Á÷Á¢ÀûÀÎ ¿¬°ü¼ºÀÌ ¿¹»óµÈ´Ù°í Àü¸ÁÇÏ°í ÀÖ´Ù. °íµµÀÇ ¹°ÀçÀÌ¿ë ±â¼ú°ú À§¿¡¼­ ¼³¸íÇÑ ¹°ÀúÀå ¹× º¸Á¸ °³³äÀ» °áÇÕÇÑ ÁÖ¸ñÇÒ ¸¸ÇÑ »ç·ÊµéÀÌ ¿©·¯ °÷¿¡¼­ ¹ß°ßµÇ°í ÀÖ´Ù.

ÀÌÁß¿¡¼­ ½Ì°¡Æ÷¸£, Ķ¸®Æ÷´Ï¾Æ, ¹Ì±¹ÀÇ »ç·ÊµéÀ» ¿ä¾àÇßÀ¸¸ç, ¶ÇÇÑ ¼Ò¿ë·® ±Ô¸ð·Î 2Â÷ 󸮰øÁ¤ÀÇ Ã³¸®¼ö¸¦ µ¥¹Ì¿öÅÍ(demineralized water)·Î½á ¹ßÀü¼Ò¿¡ À¯ÀÔ¼ö·Î Á÷Á¢ °ø±ÞÇÏ´Â ¿µ±¹ÀÇ »ç·Êµµ ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù.

Áõ¹ß¹æ½Ä ¹× ¸âºê·¹ÀÎ ±â¼úÀ» ÀÌ¿ëÇÑ ´ë±Ô¸ð ÇÏÀ̺긮µåÇü Çؼö ´ã¼öÈ­ ¼³ºñ°¡ ¸¹Àº Áö¿ª¿¡¼­ °Ç¼³ Áß¿¡ ÀÖ´Ù. Áßµ¿ Áö¿ª¿¡ ÀÖ´Â ÃÖ±ÙÀÇ ¼³ºñ´Â ´ëºÎºÐ Áõ¹ß¹æ½ÄÀÇ °¡Àå ÁÁÀº Ư¼º°ú ¸âºê·¹ÀÎ ±â¼úÀÇ ¿ì¼öÇÑ ¼º´ÉÀÌ °áÇÕµÈ ÅëÇÕÇüÀÇ ÇÏÀ̺긮µå ±â¼ú·Î °Ç¼³µÇ°í ÀÖ´Ù. À̷νá ÇÏ·ç ¶Ç´Â ¿¬°£ ¼ö¿ä°¡ ´Þ¶óÁö´Â »óȲ¿¡¼­ ´ã¼öÈ­ ½Ã½ºÅÛÀ¸·ÎºÎÅÍ Àü±â »ý»ê°ú ´ã¼ö »ý»êÀ» À§ÇÑ ÃÖÀûÀÇ ÇØ°áÃ¥À» Á¦°øÇÑ´Ù. ÀÌ·¯ÇÑ ÇÏÀ̺긮µå ÇÁ·ÎÁ§Æ®´Â Àü±âÀÇ »ý»ê ´É·ÂÀ» MED(´ÙÁßÈ¿¿ë Áõ¹ß¹ý) ¶Ç´Â MSF(´Ù´Ü Ç÷¡½Ã¹ý)¿Í °áÇÕÇÏ°í, NF¿Í RO ½Ã½ºÅÛÀ» Ãß°¡ÇÏ¿© ½Ã½ºÅÛÀÇ È¿À²¼º°ú ¹°ÀÇ È¸¼öÀ²À» Áõ°¡½ÃÅ°´Âµ¥ À̹ÙÁöÇÑ´Ù.

The International Desalination Association (IDA) advises that the effective use of MBR, UF, MF, NF and RO technologies is likely to dramatically increase the number and size of water reuse projects over the next decade and we could envisage the direct coupling of advanced water reuse technologies with seawater desalination as a means of reducing energy and cost still further.

Notable examples of advanced water reuse techniques also incorporating the concept of water banking described above are currently installed at various sites around the world. Two examples in Singapore and California, United States, are summarised below. We also include a smaller UK example where secondary treated effluent is processed for feed directly as required into a power station as demineralised water.

A number of large scale hybrid seawater desalination plants are under construction utilising the thermal and membrane technologies described above. Many of the recent plants in the Middle East are being built as integrated hybrid solutions where the best properties of thermal processes are combined with the best features of membrane technology. This provides optimum solutions for power production and the production of fresh water from the desalination systems as demand varies throughout the day and year. These hybrid projects combine power generation capability with MED or MSF, and NF and RO systems are added to raise efficiency and water recovery rates.

  
½Ì°¡Æ÷¸£, ¡®NEWater ÇÁ·ÎÁ§Æ®¡¯ ÅëÇØ Çϼö󸮼ö¸¦ °í¼øµµ Àç»ý¼ö·Î »ý»ê
Ķ¸®Æ÷´Ï¾Æ, µµ½Ã¿ë¼ö¸¦ MF¡¤RO¡¤UVó¸® ÈÄ ½Ä¼ö¡¤°ü°³¿ë¼ö µî¿¡ »ç¿ë
¿µ±¹, µµ½ÃÆó¼ö¸¦ ¸âºê·¹ÀÎ ±â¼ú·Î Ãʼø¼ö ¹° »ý»ê °¡½ºÅͺó ¹ßÀü¼Ò¿¡ °ø±Þ
»ç¿ìµð, ¶ó½º¾ËÄ«È÷¸£¿¡ ¼¼°èÃÖ´ë ±Ô¸ð ÇÏÀ̺긮µå ´ã¼öÈ­¡¤¹ßÀü½Ã¼³ ¿î¿µ

UAE, MED-RO ¹× MSF-RO¿Í ¹ßÀü¼³ºñ °áÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛ °¡µ¿


 
½Ì°¡Æ÷¸£ÀÇ ¹°Àç»ý ¿¬±¸ ÇÁ·ÎÁ§Æ® ¡®NEWater¡¯
¡á ½Ì°¡Æ÷¸£(Singapore) 1998³â ½Ì°¡Æ÷¸£ PUB¿¡ ÀÇÇØ ½ÃÀÛµÈ ½Ì°¡Æ÷¸£ ¹°Àç»ý ¿¬±¸ ÇÁ·ÎÁ§Æ®¿¡ µû¶ó ½Ì°¡Æ÷¸£ ¹°°ø±Þü°è¿¡¼­ ÁöÇϼö ¹× ÁöÇ¥¼öÀÇ ´ë¾ÈÀ¸·Î ¹°Àç»ý Ç÷£Æ®¿¡¼­ »ý»êµÇ´Â °í¼øµµ ¹°ÀÇ ÀûÇÕ¼º¿¡ ´ëÇÑ Æò°¡°¡ ÀÌ·ç¾îÁ³´Ù. ó¸®µÈ ´º¿öÅÍ(NEWater)ÀÇ ¹°Àº ¹Ì±¹ ȯ°æº¸È£Ã»(EPA)°ú ¼¼°èº¸°Ç±â±¸(WHO)ÀÇ ½Ä¼ö±âÁØÀ» ¸ðµÎ ¸¸Á·ÇßÀ¸¸ç, ÀÌ ¹°Àº µµ½Ã ¿ë¼ö¸¦ 2Â÷ ó¸®ÇÑ Ã³¸®¼ö¸¦ MF, RO ¹× UV°øÁ¤À¸·Î ´Ù½Ã ó¸®ÇÑ °ÍÀÌ´Ù.

2002³â ¼ö¸¹Àº ÆÄÀÏ·µ(pilot) ½ÃÇè ³¡¿¡ º£µ¶(Bedok)¿¡ À§Ä¡ÇÑ ´ë±Ô¸ðÀÇ NEWater °øÀå°ú Å©¶õÁö(Kranji)¿¡ À§Ä¡ÇÑ ¹°Àç»ý Ç÷£Æ®°¡ »ó¾÷¿îÀüÀ» ½ÃÀÛÇÏ°Ô µÇ¾ú´Ù. Å©¶õÁö¿¡ À§Ä¡ÇÑ ¹°Àç»ý ½Ã¼³Àº óÀ½¿¡´Â 4¸¸§©/ÀÏ Ã³¸® ±Ô¸ð¿´À¸³ª ÀÌÈÄ 7¸¸2õ§©/ÀÏ ¿ë·®À¸·Î È®ÀåµÇ¾ú´Ù. 2003³â 2¿ù ÀÌÈķΠ󸮼ö°¡ ¹ßÀü¼Òµî »ê¾÷ü¿¡ ½Ä¼ö°¡ ¾Æ´Ñ »ê¾÷¿ë¼ö·Î °ø±ÞµÇ¾ú´Ù.

2004³â¿¡´Â ¼¿·¹Å»(Seletar)¿¡¼­ 3¹ø° NEWater °øÀåÀÌ Çã°¡µÇ¾ú°í ±× 󸮼ö´Â Á¤¹ÐÀüÀÚ »ê¾÷¿¡ °ø±ÞµÇ¾ú´Ù. ÀÌÈÄ ½Ì°¡Æ÷¸£ÀÇ ¾Ó¸ñ±³(Ang Mo Kio) »ê¾÷´ÜÁö¿¡¼­´Â 2Â÷ ó¸®µÈ À¯Ãâ¼ö¿¡¼­ »ý»êµÈ °í¼øµµ ¹°ÀÌ ¹ÝµµÃ¼ ¿þÀÌÆÛ(wafer) Á¦Á¶½Ã¼³¿¡ »ç¿ëµÇ¾ú´Ù. ÃÖ±Ù ¿ë·®À» ¹Ì±¹ Ķ¸®Æ÷´Ï¾ÆÀÇ ÁöÇϼö º¸Ãæ¼³ºñ(Groundwater Replenishment System, GWRS)¿Í ºñ½ÁÇÑ ¼öÁØÀÎ 22¸¸8õ§©/ÀÏ ±Ô¸ð·Î Áõ°¡½ÃŲ ¼ÀÄß(Sembcorp) NEWater ½Ã¼³ÀÇ Ãß°¡´Â ½Ì°¡Æ÷¸£ ³» ¹° Áö¼Ó À¯ÁöÈ°µ¿¿¡ Áß¿äÇÑ ¹ßÀüÀÇ °è±â°¡ µÇ¾ú´Ù.

NEWater ÇÁ·ÎÁ§Æ®´Â ½Ì°¡Æ÷¸£ÀÇ Àüü ¹°¼ö¿äÀÇ 30%°¡ ³Ñ´Â ºÎºÐÀ» °ø±ÞÇϴµ¥, Àç»ý¼öÀÇ ´ëºÎºÐÀº ÁöÇ¥¼ö º¸Ãæ¿ë¼ö·Îµµ Ãæ´çµÈ´Ù. ÃֽŠNEWater ½Ã¼³ÀÇ °è¾àÀº °ø°ø-¹Î°£ Á¦ÈÞ ¹æ½Ä(Public-Private Partnership, PPP)À¸·Î 2008³â 1¿ù PUB¿ÍÀÇ °è¾à¿¡ µû¶ó ¼ÀÄß(Sembcorp) ±â¾÷¿¡ ÀÇÇØ ÃßÁøÇÏ°Ô µÇ¾ú´Ù. ÀÌ ÇÁ·ÎÁ§Æ®´Â 2´Ü°è·Î 2³â¿¡ °ÉÃÄ ÃßÁøµÇ´Â °ÍÀ¸·Î óÀ½ 1´Ü°è´Â 6¸¸9õ§©/ÀÏÀÇ ¹°À» »ý»êÇϸç 2009³â¿¡ ¿îÀüÀ» ½ÃÀÛÇß´Ù.

À̹ø ÇÁ·ÎÁ§Æ®´Â ¹Î°£ ºÎ¹®¿¡ ÀÇÇØ ¼³°è, °Ç¼³, ¼ÒÀ¯ ¹× ¿î¿µµÇ´Â BOO(Build Own Operate) ¹æ½ÄÀ¸·Î µÎ ¹ø°ÀÌÀÚ °¡Àå Å« ±Ô¸ðÀÇ NEWater ½Ã¼³ÀÌ´Ù. ÀÌ ½Ã¼³Àº PUB¿¡ ÀÇÇØ °³¹ßµÈ °Í°ú µ¿ÀÏÇÑ °ËÁõÀÌ ¿Ï·áµÈ ¹°ÀçÀÌ¿ë ±â¼úÀ» »ç¿ëÇßÀ¸¸ç, ±âÁ¸ÀÇ ´Ù¸¥ NEWater ½Ã¼³¿¡ Àû¿ëµÈ °Í°ú °°Àº Ç°Áú ±âÁØÄ¡¸¦ ¸¸Á·ÇÏ°í ÀÖ´Ù.
 
The Singapore Water Reclamation Study was initiated in 1998 by the Singapore Public Utilities Board(PUB) to determine the suitability of using high-purity water as an alternative source of ground and surface water to supplement Singapore¡¯s water supply. The treated NEWater (the braded high quality water) meets the USA Environmental Protection Agency and World Health Organisation drinking water standards. It is produced from municipal secondary treated effluent using MF, RO and UV.

Following extensive pilot testing, full scale NEWater factories at Bedok and Kranji water reclamation plants were commissioned in 2002. The largest plant at Kranji was designed to initially treat 40 MLD with a capacity to expand to 72MLD in the future. Since February 2003, treated water has been supplied to industries for non-drinking use in power generation and other applications.

In 2004, the third NEWater factory at Seletar was commissioned, which began supplying treated water to the microelectronics industry. Then, high purity water produced directly from the secondary treated effluent was being used in semiconductor wafer fabrication plants at the Ang Mo Kio industrial area in Singapore. The recent addition of the Sembcorp NEWater Plant marks a major step in Singapore¡¯s water sustainability activities with its total capacity increasing significantly to 228 MLD, a similar capacity tothe GWRS in California (see below).

The NEWater Project meets more than 30% of Singapore¡¯s total water demand with the majority of the reclaimed water supplementing surface water reservoirs. The contract for the latest NEWater facility was awarded to Sembcorp in January 2008 by the PUB under a public-private partnership initiative. The project was engineered in two phases over a two-year period. The initial phase of the plant, producing 69MLD, began operations in 2009.

This was the second and largest NEWater plant to be designed, built, owned and operated by the private sector, while PUB owns another three plants. This new plant uses the same established and proven water reuse technology pioneered by PUB. NEWater from this plant meets the same quality standards as those applicable to the other NEWater plants.


   
¡ã ¡®NEWater ÇÁ·ÎÁ§Æ®¡¯´Â ½Ì°¡Æ÷¸£ÀÇ Àüü ¹°¼ö¿äÀÇ 30%°¡ ³Ñ´Â ºÎºÐÀ» °ø±ÞÇϴµ¥, Àç»ý¼öÀÇ ´ëºÎºÐÀº ÁöÇ¥¼ö º¸Ãæ¿ë¼ö·Îµµ Ãæ´çµÈ´Ù.

Ķ¸®Æ÷´Ï¾Æ ¡®ÁöÇϼö º¸Ãæ ½Ã½ºÅÛ¡¯, µµ½Ã¿ë¼ö Àç»ç¿ë
¡á Ķ¸®Æ÷´Ï¾Æ(California) Ķ¸®Æ÷´Ï¾ÆÀÇ ¡®ÁöÇϼö º¸Ãæ ½Ã½ºÅÛ(Groundwater Replenishment System, GWRS)¡¯ ¶ÇÇÑ ÀÌÀü¿¡´Â ÅÂÆò¾çÀ¸·Î ¹èÃâÇß´ø µµ½Ã¿ë¼öÀÇ 2Â÷ ó¸®µÈ ¹°À» ó¸®ÇÏ°í ÀÖÀ¸¸ç, 󸮰øÁ¤Àº °ú»êÈ­¼ö¼Ò ó¸®¿Í ÇÔ²² MF, RO ¹× UVÀÇ 3´Ü°èÀÇ Ã³¸®¸¦ °ÅÄ£´Ù. 󸮸¦ °ÅÃÄ Ä¶¸®Æ÷´Ï¾Æ ¹× ¹Ì±¹ ¿¬¹æÀÇ ½Ä¼ö±âÁغ¸´Ù ³ôÀº ¼öÁúÀÇ ¹°À» »ý»êÇÑ´Ù. ó¸®µÈ ¹°Àº ÁöÇϼö ÀúÀåÁ¶ÀÇ º¸Ãæ¼ö·Î ÃæÀüµÇ°Å³ª Àú¿°µµ ¹°ÀÇ °ø±Þ·®À» Áõ°¡½ÃÄÑ ÇâÈÄ ½Ä¼öÀÇ »ý»ê, °ü°³¿ë¼ö ¹× ³ó¾÷¿ë¼ö µîÀ¸·Î »ç¿ëµÈ´Ù. 2008³â 1¿ùºÎÅÍ ½ÃÀÛµÈ °íµµÁ¤¼öó¸® ÇÁ·ÎÁ§Æ®´Â 26¸¸5õ§©/ÀÏ ±Ô¸ðÀÇ ³ôÀº ¼öÁúÀÇ ¹°À» »ý»êÇϸç, ÇÊ¿ä½Ã Ãß°¡ÀûÀΠó¸® °úÁ¤À» °ÅÄ¡¸é Ķ¸®Æ÷´Ï¾Æ ºÏºÎ ¹× Áß¾ÓºÎÀÇ ¿À·»ÁöÄ«¿îƼ¿¡ °ÅÁÖÇÏ´Â ´ë·« 60¸¸ ¸íÀÇ ÁֹεéÀÇ ¹°¼ö¿ä¸¦ ÃæÁ·ÇÒ ¼ö ÀÖ´Ù.

GWRSÀÇ ¼³°è¿Í °Ç¼³Àº ¿À·»ÁöÄ«¿îƼ »ó¼ö±â°ü(Orange County Water District, OCWD) ¹× ¿À·»ÁöÄ«¿îƼ Çϼö±â°ü(Orange County Sanitation District, OCSD) ¿¡¼­ °øµ¿À¸·Î ±â±ÝÀ» ¸ð¾Æ ÁøÇàµÈ ÇÁ·ÎÁ§Æ®·Î ÀÌ ±â°üÀº 30³â ÀÌ»ó Çù¾÷ °ü°è¸¦ À¯Áö, °ú°Å ¿öÅÍÆÑÅ丮 21(Water Factory 21) Ç÷£Æ® ÇÁ·ÎÁ§Æ®¸¦ ¼öÇàÇÑ °æÇèÀ¸·Î À̹ø GWRSÀÇ ÃßÁø °³¹ßÀ» À̲ø°Ô µÇ¾ú´Ù. GWRS¿¡ °ø±ÞµÇ´Â ¹°Àº ÀÏ´Ü OCSD Çϼöó¸®Àå¿¡¼­ 󸮵Ǵµ¥, Æó¼ö¸¦ 75¸¸7õ§©/ÀÏ ¿ë·®À¸·Î ¼öÁýÇÏ¿© ¸î °¡Áö °øÁ¤À» °ÅÄ£ µÚ »ó´çÇÑ ¾çÀÇ ºÒ¼ø¹°À» Á¦°ÅÇÑ´Ù.

ÇÑÆí, ¾ö°ÝÇÑ ¼ö¿ø °ü¸® ÇÁ·Î±×·¥¿¡ ÀÇÇØ ÆÄ¿îƾ ¹ë¸® Áö¿ª ¹× ÇåÆÃÅÏ ºñÄ¡ Áö¿ª¿¡ À§Ä¡ÇÑ OCSDÀÇ ½Ã¼³·Î ±Ý¼Ó¹°Áú ¹× È­Çй°ÁúÀÌ µé¾î¿À´Â °ÍÀ» Á¦ÇÑÇÑ´Ù. Æó¼ö´Â ÀÌÈÄ ¹Ù ½ºÅ©¸°(bar screeb), ±×¸®Æ® è¹ö(grit chamber), »ì¼ö¿©»ó ÇÊÅÍ(trickling), û¡Á¶(clarifier) ¹× ¼Òµ¶°øÁ¤ÀÇ °úÁ¤À» °ÅÄ£ ÈÄ¿¡ GWRS ¼³ºñ·Î º¸³»Áø´Ù. GWRS¿¡¼­´Â MF¿Í RO¿¡ ÀÇÇÑ Ã³¸®¸¦ ÇÑ µÚ, ó¸®µÈ ¹°Àº °ú»êÈ­¼ö¼Ò¿Í ÇÔ²² ³ôÀº Á¶µµÀÇ UV ±¤¼±¿¡ ³ëÃâ½ÃÄÑ RO ¸âºê·¹ÀÎÀ» Åë°úÇÒ ¼ö ÀÖ´Â ¹Ì·®ÀÇ À¯±â¹°ÁúÀ» »ì±Õ ¹× Á¦°ÅÇÑ´Ù. ÀÌ °øÁ¤Àº ÀÌ·¯ÇÑ À¯±â¹°ÁúÀ» Á¦°ÅÇÏ´Â ¸ñÀûÀ¸·Î È¿°úÀûÀÎ »ì±ÕÀÛ¿ë°ú °íµµÀÇ »êÈ­°øÁ¤ ±â´ÉÀ» Á¦°øÇÑ´Ù.

The Groundwater Replenishment System(GWRS) in California also processes municipal secondary treated effluent that would have previously been discharged into the Pacific Ocean. The ¡®waste¡¯ is treated using a three-step process consisting of MF, RO and UV with hydrogen peroxide. The process produces high quality water that exceeds all Californian and US federal drinking water standards. Treated water is used to replenish groundwater reserves and increase the supply of lower saline sources for subsequent drinking water production, irrigation and agriculture. Operational since January 2008, this advanced water purification project can produce up to 265MLD of high quality water, enough, when treated further, to meet the needs of nearly 600,000 residents in north and central Orange County, California.

The design and construction of the GWRS was a project jointly funded by the Orange County Water District and the Orange County Sanitation District(OCSD). These two public agencies have worked together for more than 30years, previously on the Water Factory 21 project that led to the development of the GWRS. Water used in the GWRS is first treated at OCSD, which collects more than 757MLD of wastewater and removes a high degree of impurities through several processes. A stringent source control program limits metals and chemicals flowing into OCSD¡¯s plants in the Fountain Valley and Huntington Beach areas.

The wastewater undergoes treatment through bar screens, grit chambers, trickling filters, activated sludge systems, clarifiers and disinfection processes before it is sent to the GWRS. Following treatment by MF and RO in the GWRS, the treated water is exposed to high intensity UV light with hydrogen peroxide to disinfect and destroy any trace organic compounds that may have passed through the RO membranes. This provides an effective disinfection and advanced oxidation process that eliminates these compounds.


   
¡ã ¹Ì±¹ Ķ¸®Æ÷´Ï¾ÆÀÇ ¡®ÁöÇϼö º¸Ãæ ½Ã½ºÅÛ¡¯(»çÁø)Àº 2Â÷ ó¸®µÈ µµ½Ã¿ë¼ö¸¦ °ú»êÈ­¼ö¼Ò ó¸®¿Í ÇÔ²² MF, RO, UVÀÇ 3´Ü°èÀÇ Ã³¸®¸¦ °ÅÃÄ Ä¶¸®Æ÷´Ï¾Æ ¹× ¹Ì±¹ ¿¬¹æÀÇ ½Ä¼ö±âÁغ¸´Ù ³ôÀº ¼öÁúÀÇ ¹°À» »ý»êÇÑ´Ù.


¿µ±¹, µµ½ÃÆó¼ö¸¦ °íµµÃ³¸® ÈÄ ´ëü¼öÀÚ¿øÀ¸·Î »ç¿ë
¡á ¿µ±¹(UK) ¿µ±¹¿¡¼­´Â ºñ±³Àû ¼Ò±Ô¸ðÀÇ ÇÁ·ÎÁ§Æ®°¡ 10³â ³Ñ°Ô ÁøÇàµÇ¾î ¿ÔÀ¸¸ç, µµ½Ã Æó¼öÀÇ 2Â÷ ó¸®µÈ ¹°À» ó¸®Çϴµ¥ MF¿Í RO±â¼úÀ» °áÇÕÇÏ¿© ó¸®, ´ëü¼öÀÚ¿øÀ¸·Î »ç¿ëÇÏ°í ÀÖÀ¸¸ç, ÇÇÅͺ¸·Î¿ì(Peterborough) °¡½ºÅͺó ¹ßÀü¼Ò¿¡ °í¼øµµ ¹°À» °ø±ÞÇÏ°í ÀÖ´Ù. ¹ßÀü¼Ò´Â ¿À¼öó¸®Àå Àαٿ¡ ¼³Ä¡µÇ¾î ÀÖÀ¸¸ç, ACWA Services°¡ ½Ã¼³À» Áþ°í ¿Ï°øÇÏ¿© 2000³â¿¡ »ó¾÷¿îÀüÀÌ ½ÃÀ۵Ǿú´Ù.

RO½Ã¼³¿¡ ÀÇÇØ ¹ßÀü¼Ò¿¡¼­ Àüµµµµ 60§Á/cm ÀÌÇÏÀÇ Å»¿°¼ö »ý»êÀÌ °¡´ÉÇÏ¿© Å»¿°¼öÀÇ »ý»ê·®À» 20% ´Ã¸®¸é¼­ µ¿½Ã¿¡ À̿±³È¯ Àç»ý¿¡ µé¾î°¡´Â ºñ¿ëÀÇ 90% ÀÌ»óÀ» Àý°¨ÇÒ ¼ö ÀÖ¾ú´Ù. ÀÌ´Â 1õ250§©/ÀÏ ¹°·®ÀÇ ½Ä¼ö¸¦ Àý¾àÇÏ°Ô µÇ¾î °á°úÀûÀ¸·Î ¹ßÀü¼ÒÀÇ Àüü ¹°»ç¿ë·®À» 11% °¨¼Ò½ÃÅ°´Â È¿°ú¸¦ °¡Á®¿Ô´Ù.

Ç÷¡±× Ææ(Flag Fen) Çϼöó¸®ÀåÀÇ ÀçÀÌ¿ë ÇÁ·ÎÁ§Æ®°¡ ½Ì°¡Æ÷¸£ NEWater(´º¿öÅÍ) ÇÁ·ÎÁ§Æ®³ª ¹Ì±¹ÀÇ GWRS¿Í °°Àº ´ë±Ô¸ð´Â ¾Æ´ÏÁö¸¸ ÀÌ¹Ì °ËÁõµÈ °íµµÀÇ ¿©°ú ¹× ºÐ¸® ±â¼úÀ» ÀÌ¿ëÇÑ ´ëü¼öÀÚ¿øÀ» Á÷Á¢ ÀÌ¿ëÇÏ´Â µµ½ÃÁö¿ª ¶Ç´Â ¼Ò±Ô¸ð ÀåÄ¡ÀÇ »ê¾÷ü¿¡ ´ëÇÏ¿© ½Ä¼ö¿¡ ´ëÇÑ ¼ö¿ä¸¦ Àý°¨ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù. ÇÁ·ÎÁ§Æ®ÀÇ ÇÙ½É ¿øµ¿·ÂÀº ÇÇÅͺ¸·Î¿ì ¹ßÀü ½Ã¼³°ú Ç÷¡±× Ææ(Flag Fen) Çϼöó¸® ½Ã¼³ÀÇ ÁöÁ¤ÇÐÀû À§Ä¡¿´À¸³ª ±âÁ¸ ¹ßÀü¼ÒÀÇ ¹ßÀüÇü½Ä, ¼öÁú ¹× ¼ö·®Àû ¿ä±¸»çÇ× ¶§¹®¿¡ ½Ã³ÊÁö È¿°ú´Â ±×¸® Å©Áö ¾Ê¾Ò´Ù.

A smaller scale project in the UK has been in operation for over a decade and incorporates MF and RO technology with secondary treated municipal effluent again used as an alternative source, processed into high purity water for feeding directly into the Centrica-owned Peterborough gas turbine power station. The station is located adjacent to Flag Fen Sewage Treatment Works. ACWA Services built and installed the plant, commissioning the system in 2000.

The RO plant produces water with a conductivity of less than 60§Á/cm enabling demineralised water production at the power station to increase by 20% with a reduction of over 90% in the costs of ion exchange regeneration. A total of 1.25MLD of drinking water is saved (previously purchased from Anglian Water) which initially reduced the power station¡¯s total water usage by 11%.

Whilst the Flag Fen project is not on the same throughput scale as the NEWater Project or the GWRS, it does show demand for drinking water can be reduced at the municipal or smaller scale by industries utilising alternative sources of water directly, using proven advanced filtration and separation technology. The geographical location of the power station in Peterborough and Flag Fen sewage treatment works was a main driver for the project. But the opportunity for synergies and hybridisation were limited due to the type of power station in existence and the water quality and volume requirements.

»ç¿ìµðÀÇ ÇÏÀ̺긮µå ÇüÅÂÀÇ ´ã¼öÈ­¡¤¹ßÀü½Ã¼³
¡á »ç¿ìµð¾Æ¶óºñ¾Æ(Saudi Arabia) »ç¿ìµð¾Æ¶óºñ¾ÆÀÇ ¶ó½º¾ËÄ«È÷¸£(Ras Al-Khair) ÇÏÀ̺긮µå ½Ã¼³Àº ÇöÀç °¡µ¿ ÁßÀÎ ½Ã¼³ Áß ¼¼°è¿¡¼­ °¡Àå Å« ±Ô¸ðÀÇ ÇÏÀ̺긮µå ´ã¼öÈ­ ¹× ¹ßÀü½Ã¼³ÀÌ´Ù. ÀÌ ½Ã¼³¿¡¼­´Â RO ¸âºê·¹Àΰú MSF Áõ¹ß¹æ½Ä ±â¼úÀ» ÀÌ¿ëÇÏ¿© °¢°¢ 30¸¸8õ§©/ÀÏ ¹× 72¸¸8õ§©/ÀÏ ±Ô¸ðÀÇ ¹°À» »ý»êÇÑ´Ù. ½Ã¼³Àº Àü±â¿Í ¹°À» »ý»êÇÏ´Â ÀÌÁß ¸ñÀû ½Ã¼³·Î ´ã¼ö 102¸¸5õ§©/ÀÏ ¹× Àü·Â·® 2õ650§Ó¸¦ »ý»êÇÑ´Ù.

ÀÌ Ç÷£Æ®´Â 2011³â 2¿ù °Ç¼³ÀÌ ½ÃÀ۵Ǿú°í 2015³â ÃÊ ¿Ï°øµÇ¾ú´Ù. ¹ßÀü½Ã¼³Àº 5°³ÀÇ 600§Ó º¹ÇÕ »çÀÌŬ °¡½ºÅÍºó ¼³ºñ¿Í 2°³ÀÇ 220§Ó ´ÜÀÏ »çÀÌŬ °¡½ºÅÍºó ¼³ºñ·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. »ý»êµÈ Àü·Â ¹× ¹° Áß 1õ350§ÓÀÇ Àü·Â°ú 2¸¸5õ§©/ÀÏ ±Ô¸ðÀÇ ¹°Àº ±Ùó¿¡ À§Ä¡ÇÏ´Â ¸¶µ§(Maaden)ÀÇ ¾Ë·ç¹Ì´½ Á¤Á¦°øÀå¿¡¼­ »ç¿ëÇÑ´Ù.

°¡µ¿ ÁßÀÎ ½Ã¼³·Î °¡Àå Å« ±Ô¸ðÀÇ ÇÏÀ̺긮µå ÇüÅÂÀÇ °¡¿­¹æ½Ä ´ã¼öÈ­ ¹× ¹ßÀü½Ã¼³Àº »ç¿ìµð¾Æ¶óºñ¾Æ¿¡ À§Ä¡ÇÏ°í ÀÖ´Â MED ±â¼úÀ» ÀÌ¿ëÇÑ Á꺣ÀÏ Ç÷£Æ®(Jubail Water and Power Plant, JWAP)ÀÌ´Ù. ÀÌ´Â SIDEM¿¡ ÀÇÇØ °Ç¼³µÈ Marafiq Ç÷£Æ®·Î 27°³ÀÇ MED ¼³ºñ¿Í 80¸¸§©/ÀÏ ±Ô¸ðÀÇ ¼³ºñ·Î µÇ¾î ÀÖ´Ù. ºñ¿ëÀº 10¾ï ´Þ·¯°¡ ¼Ò¿äµÆÀ¸¸ç ¹°ÀÇ ´ã¼ö¿Í ´õºÒ¾î 2õ744§ÓÀÇ Àü±â¸¦ »ý»êÇÏ´Â ÀÌÁß ¸ñÀû ½Ã¼³ÀÌ´Ù.

The largest operational hybrid desalination and power production plant in the world is currently the Ras Al-Khair hybrid plant in Saudi Arabia that incorporates RO membranes and MSF thermal technology to produce 308MLD(308,000§©/d) and 728MLD(728,000§©/d) respectively. The plant is dual purpose, with an export production capacity of 1,025MLD(1,025,000§©/d) desalinated water and an electricity production capacity of 2,650MW.

The construction of the plant commenced in February 2011 and was completed earlier this year. The power plant comprises five 600MW combined cycle gas turbine units and two 220MW single cycle gas turbine units. Maaden¡¯s new alumina refinery, located nearby, will utilise up to 1,350MW of the electricity and 25MLD(25,000§©/d) of the water produced.

The largest operational hybrid thermal desalination and power production plant is currently the Jubail Water and Power plant(JWAP) incorporating MED technology, also located in Saudi Arabia. This is a Marafiq plant built by SIDEM with 800MLD(800,000§©/d) production capacity from 27MED units. The cost was US$ 1bn. This is also a dual purpose plant generating 2,744MW electricity in addition to the desalinated water.


   
¡ã ÇÏÀ̺긮µå ÇüÅÂÀÇ °¡¿­¹æ½Ä ´ã¼öÈ­ ¹× ¹ßÀü½Ã¼³ÀÎ »ç¿ìµð¾Æ¶óºñ¾Æ Á꺣ÀÏ Ç÷£Æ®(»çÁø)´Â ÇöÀç °¡µ¿ ÁßÀÎ ½Ã¼³·Î´Â °¡Àå Å« ±Ô¸ðÀÌ´Ù.
UAEÀÇ ¡®ÈÄÀÚÀÌ¶ó ¥°¡¤¥± ÇÁ·ÎÁ§Æ®¡¯
¡á ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE) ÇöÀç °¡Àå Å« ±Ô¸ðÀÇ MED-RO °áÇÕ ÇÏÀ̺긮µå ½Ã¼³Àº ¡®ÈÄÀÚÀ̶ó(Fujairah)¥± ÇÁ·ÎÁ§Æ®¡¯ÀÌ´Ù. ÀÌ´Â UAE¿¡¼­ ³ìÃÊÁö °³¹ß·Î °Ç¼³µÈ SIDEM°ú Veolia»ç ÇÕÀÛÀÇ ÇÁ·ÎÁ§Æ®·Î 2õ§ÓÀÇ Àü·Â°ú 59¸¸1õ§©/ÀÏÀÇ ´ã¼ö¸¦ »ý»êÇϸç, ÇÏÀ̺긮µå ½Ã½ºÅÛÀº º¹ÇÕ »çÀÌŬ ÇüÅ·ΠÀÛµ¿ÇÏ´Â 5°³ÀÇ °íÈ¿À² °¡½º ÅͺóÀ» Æ÷ÇÔÇÑ´Ù.

UAEÀÇ ¼ÀÄß(Sembcorp) ¹°¡¤Àü·Â ȸ»ç¿¡¼­ ¼ÒÀ¯ÇÏ°í ÀÖ´Â ¡®ÈÄÀÚÀ̶ó(Fujairah)¥° ÇÁ·ÎÁ§Æ®¡¯´Â 2004³â¿¡ ½Ã¿îÀüµÇ¾úÀ¸¸ç, MSF-RO ÇÏÀ̺긮µå ½Ã½ºÅÛÀÌ ¹ßÀü¼³ºñ¿Í °áÇÕÇÏ¿© Àü±â 893§Ó¿Í ´ã¼ö 45¸¸5õ§©/ÀÏÀ» »ý»êÇÑ´Ù.

¹ßÀü¿ë·®À» ÃÖ´ë·Î ÇÏ´Â ¹Ý¸é Çؼö ¹× ´ëü¼öÀÚ¿øÀ» ÃÖ´ëÀÇ È¿À²·Î »ç¿ëÇÏ·Á¸é ¹°¼øȯ ±¸Á¶¸¦ ÅëÇÕÀûÀ¸·Î °Ë»çÇÏ¿© Æ÷°ýÀûÀÎ ¼öÀÚ¿ø °ü¸®°¡ ÇÊ¿äÇÏ´Ù°í Àνĵǰí ÀÖ´Ù. ¶ÇÇÑ Æó¼ö·Î ¹æÃâ, ¼ö¿ä·®, ´©¼ö ¹× Áõ¹ß·Î ÀÎÇÑ ¼Õ½ÇÀ» ÁÙ¿© ¹°°ü¸®ÀÇ È¿À²À» ÃÖ´ëÈ­ÇÒ ÇÊ¿ä°¡ ÀÖ´Ù. GWRS ½Ã½ºÅÛ°ú NEWater ½Ã¼³Àº ¾î¶»°Ô ´ëü¼öÀÚ¿øÀÌ µµ½Ã ±Ô¸ð¿¡¼­ »ç¿ëµÇ¾î ½Ä¼ö °ø±ÞÀ» ´Ã¸®°í ±âÁ¸ÀÇ ¿ø¼ö »ç¿ëÀÇ ¾Ð¹ÚÀ» ÁÙ¿©ÁÖ´ÂÁö¸¦ º¸¿©ÁÖ´Â ÁÁÀº »ç·ÊÀ̸ç, Æó¼öÀÇ 2Â÷ 󸮼ö¿¡ ´ëÇÑ ¿©°ú¿Í ºÐ¸®±â¼ú¿¡ ÀÇÇÑ Ã³¸®´Â ÇöÀç Àß Áõ¸íµÇ¾î ÀÖ´Â °íµµÀÇ ±â¼ú·Î Áö¼ÓÀûÀ¸·Î °í¼öÁú, °í¼øµµÀÇ ¹°À» »ý»êÇÒ ¼ö ÀÖ´Â ±â¼úÀÌ´Ù.

»ç¿ìµð¾Æ¶óºñ¾Æ¿Í UAE¿¡¼­ÀÇ ´ë±Ô¸ð °æÇè¿¡ ±âÃÊÇÏ¿© ¿ì¸®´Â ´ëü ¼öÀÚ¿ø ¹× Æó¼ö ½Ã½ºÅÛÀÌ ´Ù¾çÇÑ Áö¿ªÀÇ ¹°ÀÚ¿øÀ» ÀÌ¿ëÇÏ¿© Àü·Â »ý»ê ½Ã½ºÅÛ¿¡¼­ ³Ã°¢, °øÁ¤ ¹× ´ã¼ö °ø±ÞÀ̶ó´Â ¿ëµµ·Î ¹Ì·¡ ÇÁ·ÎÁ§Æ®¿¡ Æ÷Ç﵃ ¼ö ÀÖ´Â °ÍÀ» ¿¹»óÇغ¼ ¼ö ÀÖ´Ù. °øÁ¤Ã³¸® ±â¼úÀÇ ¼±Åÿ¡¼­ ÇÏÀ̺긮µå ±â¼úÀÌ °¡Àå È¿°úÀûÀÎ ±â¼ú·Î ¼±ÅõǾî Àü·Â ¼ö¿ä°¡ ³·Àº ½Ã±â¿Í Àç»ç¿ë °¡´ÉÇÑ ¿¡³ÊÁö¸¦ ¸¹ÀÌ »ý»êÇÏ´Â ±â°£¿¡ ¹ßÀü ¿ë·®À» ÃÖ´ëÇÑ Áõ°¡½ÃÄÑ ¿¡³ÊÁö ¼ö¿ä¸¦ ÁÙÀÌ°í µµ½ÃÀÇ È¯°æ¿¡ ´ëÇÑ ¿µÇâÀÇ ÃÖ¼ÒÈ­°¡ °¡´ÉÇÏ´Ù. ÇöÀç ´ç¸é °úÁ¦´Â ¸Ô´Â¹° ¼öÁúÀÇ ¾ÈÀü¼ºÀ» À¯ÁöÇÏ´Â µ¿½Ã¿¡ ¹°È¿À²°ú ¿¡³ÊÁö È¿À²ÀÌ ÃÖ´ë°¡ µÉ ¼ö ÀÖ´Â ÅëÇÕ ÇØ°áÃ¥ÀÇ °³¹ßÀÌ´Ù.
 
The largest hybrid MED-RO plant currently is the Fujairah II project, a SIDEM/Veolia project built as a green field development in the United Arab Emirates and producing 2000 MW of power and 591MLD of desalinated water. The hybrid system includes five high-efficiency gas turbines operated in combined cycle mode. The Fujairah I project, owned by Emirates Sembcorp Water and Power Company and commissioned in 2004, comprises a hybrid MSF-RO system again combined with power production, with an electricity generation capacity of 893MW and a seawater desalination production capacity of 455MLD.

We have suggested that comprehensive water management, which examines the water cycle as a whole, is required to make the most effective overall use of seawater and alternative sources of water whist optimising power generation capacity. In addition, there is the need to reduce waste, demand, leakage and evaporation losses so we can maximise water management efficiency. The GWR system and NEWater plants provide excellent examples of how alternative sources can be used on a municipal scale to expand drinking water supplies and reduce the pressure on traditional raw water sources. Filtration and separation technology for the treatment of secondary effluent is now well proven and consistently high quality, high purity water can be produced.

Based on the large scale experiences in Saudi Arabia and the United Arab Emirates, we can envisage the possibility of future projects where alternative water and seawater systems can become integrated with power generation systems to provide cooling, process and freshwater for banking and storage when required, using various local water sources. This would make the most effective use of hybridisation in the selection of process technologies, reducing the overall energy requirement and environmental impact of a municipality by making full use of generation capacity during periods of low power demand and high renewable energy production. The challenge is for the development of integrated solutions at the municipal scale where both water efficiency and energy efficiency can be maximised whilst maintaining security of drinking water supply.


   
¡ã ÇöÀç °¡Àå Å« ±Ô¸ðÀÇ MED-RO °áÇÕ ÇÏÀ̺긮µå ½Ã¼³Àº UAE°¡ °Ç¼³ÇÑ ¡®ÈÄÀÚÀ̶ó(Fujairah) ¥± ÇÁ·ÎÁ§Æ®¡¯(»çÁø)·Î 2õMWÀÇ Àü·Â°ú 59¸¸1õ§©/ÀÏÀÇ ´ã¼ö¸¦ »ý»êÇÑ´Ù.

ÇâÈÄ Àü¸Á(Future Outlook)
Àü¼¼°èÀûÀ¸·Î Àα¸ÀÇ Áõ°¡, ±âÈĺ¯È­, »ê¾÷ÀÇ ¹ßÀü ¹× ¿¡³ÊÁö ¼ö¿äÀÇ Áõ°¡·Î ÀÎÇØ ¹°°ø±Þ¿¡ ´ëÇÑ Ä¿´Ù¶õ ¾Ð¹ÚÀÌ Áö¼ÓµÇ°í ÀÖ´Ù. ¿À´Ã³¯ÀÇ ¹°ºÎÁ· ¹®Á¦°¡ Å©°Ô Çö½ÇÈ­µÇ¾î ¹° ¹× ¿¡³ÊÁö ºÐ¾ß¿¡¼­ÀÇ ±â¼ú°³¹ß°ú ÅõÀÚÁõ°¡¸¦ À¯¹ß½ÃÅ°°í ÀÖ´Ù. µû¶ó¼­ »õ·Î¿î ±â¼ú°³¹ß ¹× Á¦Á¶°øÁ¤ÀÇ °³¼±À» À̲ø¾î¿Ô°í ÀÌ´Â ¾ÕÀ¸·Îµµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÈ´Ù.

The world will continue to face pressure on its water supply. Population growth, climate change and industrial development with increased energy requirements will inevitably force the trend to continue. But the high visibility of the water scarcity issue today has driven and will continue to drive innovation and investment in the water and energy sectors, with the development of emerging technologies and improved manufacturing processes.


[¿ø¹®Ãâó = ¡ºFiltration + Separation¡»(www.filtsep.com) 5¡­6¿ùÈ£ / ¹ø¿ª = ±è´ö¿¬ º»Áö ÆíÁýÀ§¿ø]
 
[¡º¿öÅÍÀú³Î¡» 2015³â 9¿ùÈ£¿¡ °ÔÀç]
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [±Û·Î¹ú À̽´ ±â¼ú] ´ã¼öÈ­¡¤¹°ÀçÀÌ¿ë ±â¼úÀÇ Çõ½Å
´ÙÀ½±Û [Ưº°±â°í] ÀϺ» ´ëµµ½Ã ÇÕ·ù½Ä Çϼöµµ °³¼±»ç·Ê °ËÅä
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.