Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2022] [ÇØ¿ÜÁ¶»çº¸°í¼­] ¡°2018¡­2020³â À¯·´ °¡¹³, 250³â µ¿¾È °¡Àå °­·ÄÇß´Ù¡±
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2022.05.19 Á¶È¸¼ö 551
ÆÄÀÏ÷ºÎ

[ÇØ¿ÜÁ¶»çº¸°í¼­]  ¡°2018¡­2020³â À¯·´ °¡¹³, 250³â µ¿¾È °¡Àå °­·ÄÇß´Ù¡±

µ¶ÀÏ Ç︧ȦÃ÷ ȯ°æ¿¬±¸¼¾ÅÍ(UFZ),  ¡°µ¶ÀÏ¡¤ÇÁ¶û½º¡¤Ã¼ÄÚ µî ÁߺΠÀ¯·´¼­ À¯·´ À°Áö ¸éÀûÀÇ 36%¿¡ ¿µÇâ ¹ÌÃÄ¡±

À¯·´ Àü¿ª¼­ ¹° ºÎÁ· ÃÊ·¡¡¦¹Ð, ¿Á¼ö¼ö, º¸¸® µî ÀÛ¹° ¼öÈ®·®µµ 20¡­40% °¨¼Ò



¸¹Àº »ç¶÷µéÀÌ 2018³âºÎÅÍ 2020³â±îÁöÀÇ °¡¹³À» ±â¾ïÇÏ°Ô µÉ ³¯(days), ´Þ(months), ÇØ(years)¿´´Ù. µ¶ÀÏ ¶óÀÌÇÁÄ¡È÷ÀÇ Ç︧ȦÃ÷ ȯ°æ¿¬±¸¼¾ÅÍ(UFZ ;  Helmholtz Centre for Environmental Research) °úÇÐÀÚµéÀÌ À̲ô´Â ±¹Á¦ ¿¬±¸ÆÀÀÌ ÀÌ »ç°ÇÀÇ ¿ª»çÀû Â÷¿øÀ» ºÐ·ùÇÏ´Â µ¥ ¼º°øÇß´Ù.


±×µéÀÇ ¿¬±¸ °á°ú¿¡ µû¸£¸é 18¼¼±â Áß¹Ý ÀÌÈÄ À¯·´¿¡¼­´Â ÀÌ·¸°Ô ³ÐÀº Áö¿ªÀ» Àå±â°£ µ¤°í ¿Â³­ÇÑ ±â¿Â°ú ÀÏÄ¡ÇÏ´Â °¡¹³ÀÌ ¹ß»ýÇÑ ÀûÀÌ ¾ø¾ú´Ù. µû¶ó¼­ 2018³â¿¡¼­ 2020³â »çÀÌ´Â °¡¹³¿¡ ´ëÇÑ »õ·Î¿î ±âÁØÀÌ µÈ´Ù.


ÀÌ·¯ÇÑ Àü·Ê ¾ø´Â »ç°ÇÀÌ ¹Ì·¡¿¡ ´õ ÀÚÁÖ ¹ß»ýÇÒ °¡´É¼ºÀÌ Àֱ⠶§¹®¿¡ °úÇÐÀÚµéÀº Áö¿ªÀûÀ¸·Î ÀûÇÕÇÑ °¡¹³ ¿¹¹æ Á¶Ä¡ÀÇ °³¹ß ¹× ½ÃÇàÀ» ½Ã±ÞÈ÷ ±Ç°íÇÑ´Ù.


66666.gif

µ¶ÀÏ Ç︧ȦÃ÷ ȯ°æ¿¬±¸¼¾ÅÍ(UFZ)´Â º¸°í¼­¸¦ ÅëÇØ  ¡°2018¡­2020³â¿¡ ¹ß»ýÇÑ À¯·´ °¡¹³Àº 250³â µ¿¾È °¡Àå °­·ÄÇߴµ¥, ƯÈ÷ µ¶ÀÏ¡¤ÇÁ¶û½º¡¤Ã¼ÄÚ µî ÁߺΠÀ¯·´¼­ À¯·´ À°Áö ¸éÀûÀÇ 36%¿¡ ¿µÇâ ¹ÌÃÆ´Ù¡±°í ¹àÇû´Ù.


¸Þ¸¶¸¥ ÃÊ¿ø°ú µéÆÇ, ¸¶¸¥ °³¿ï ¹Ù´Ú, Á×Àº ½£, °¨¼ÒµÈ ¹ßÀü¼Ò »ý»ê·®ÀÌ °¨¼ÒÇߴµ¥, 2018³â, 2019³â ¹× 2020³âÀÇ °¡¹³ ¿¬µµ´Â ¿¹¿ÜÀûÀ̾ú°í ÀÚ¿¬°ú °æÁ¦¿¡ »ó´çÇÑ ¿µÇâÀ» ¹ÌÃÆ´Ù. ÀÌÀü¿¡´Â ¿ª»çÀû Â÷¿ø¿¡¼­ ¾îµð¿¡ ºÐ·ùµÇ¾î¾ß ÇÏ´ÂÁö ¸íÈ®ÇÏÁö ¾Ê¾Ò´Ù.


¡á ÀÌÁ¦ ¿ì¸®´Â ¾È´Ù(Now we know)

UFZ ¸ðµ¨ÀÌÀÚ ¹Ì±¹ Áö±¸¹°¸®Çп¬ÇÕ(American Geophysical Union)ÀÇ ¡ºÁö±¸¹Ì·¡Àú³Î( Earth¡¯s Future journa)¡»¿¡ ½Ç¸° ±â»çÀÇ ¼ö¼® ÀúÀÚÀΠ ¿Ãµå¸®Ä¡ ¶óÄÚº¤(Oldrich Rakovec) ¹Ú»ç´Â ¡°2018³â¿¡¼­ 2020³â±îÁöÀÇ °¡¹³Àº À¯·´ÀÇ °¡¹³¿¡ ´ëÇÑ »õ·Î¿î ±âÁØÀ» Á¦½ÃÇÑ´Ù¡±¶ó°í ¸»ÇÑ´Ù.


°úÇÐÀÚµéÀº 1766³â±îÁöÀÇ ¿ª»çÀû °¡¹³À» À籸¼ºÇÏ°í 2018³â¿¡¼­ 2020³â±îÁöÀÇ °¡¹³°ú ±× ¹üÀ§¸¦ ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ ÆíÁý ¹× ¸ðµ¨¸µ ±â¼ú·Î À̸¦ ¹®¼­È­Çß´Ù.


¿¹¸¦ µé¾î, 2018³â¿¡¼­ 2020³â »çÀÌÀÇ °¡¹³Àº ƯÈ÷ µ¶ÀÏ, ÇÁ¶û½º, üÄÚ¿Í °°Àº ÁߺΠÀ¯·´¿¡¼­ À¯·´ À°Áö ¸éÀûÀÇ 36%¿¡ ¿µÇâÀ» ¹ÌÃÆ´Ù. ¿Ãµå¸®Ä¡ ¶óÄÚº¤(Oldrich Rakovec) ¹Ú»ç´Â ¡°Áö³­ 250³â µ¿¾È ÀÌ¿Í °°Àº ´ë±Ô¸ð °¡¹³ »ç°ÇÀº ¾ø¾ú´Ù¡±¶ó°í ¼³¸íÇÑ´Ù.


2018³â 4¿ù¿¡ ½ÃÀ۵Ǿî 2020³â 12¿ù¿¡ óÀ½ Á¾·áµÈ À¯·´ÀÇ °¡¹³ »ç°ÇÀÇ Àüü ±â°£µµ 33°³¿ù·Î À¯³­È÷ ±æ¾ú´Ù. 1857³â°ú 1860³â »çÀÌÀÇ °¡¹³¸¸ÀÌ Á¶±Ý ´õ ¿À·¡ Áö¼ÓµÇ¾î ÃÑ 35°³¿ùÀÌ µÇ¾ú´Ù. ¶ÇÇÑ 2018³âºÎÅÍ 2020³â±îÁö´Â ±íÀÌ 2m±îÁö °ËÅä ÁßÀÎ Åä»ç·®(Åä¾ç ºÎÇÇ¿¡¼­ 2021³â°ú 2022³â¿¡µµ °¡¹³ÀÌ °è¼ÓµÆ´Ù.


UFZ ¸ðµ¨ÀÎ ¿Ãµå¸®Ä¡ ¶óÄÚº¤(Oldrich Rakovec) ¹Ú»ç´Â ¡°2021³âÀº Á¶±Ý ´õ ½ÀÇÏ°í ³ó¾÷¿¡ Áß¿äÇÑ Ç¥Åä¿Í ¹°À» Àß °ø±ÞÇßÁö¸¸ ½À±â°¡ ¸ðµç °÷¿¡¼­ ´õ ±íÀº °÷±îÁö ħÅõÇÏÁö ¸øÇß´Ù¡±°í ¸»ÇÑ´Ù.


°úÇÐÀÚµéÀÌ ¸ðµ¨À» À§ÇØ À¯·´À» ºÐÇÒÇÑ 50¡¿50km ±×¸®µå ¼¿(grid cell)ÀÇ Æò±Õ °¡¹³±â°£µµ ¿¹¿ÜÀûÀ¸·Î ±æ¾ú´Ù. °¡¹³ »ç°ÇÀº ½Ã°ø°£¿¡ °ÉÃÄ µ¿ÀûÀ¸·Î ¹ßÀüÇϱ⠶§¹®¿¡, Áï ÇÑ ÁöÁ¡¿¡¼­ ½ÃÀÛÇÏ¿© ¹ßÀüÇÏ°í ¸¶Ä§³» ´Ù¸¥ °÷¿¡¼­ ³¡³ª±â ¶§¹®¿¡ ÀÌ °ªÀº °¡¹³ »ç°ÇÀÇ ÃÑ ±â°£°ú ´Ù¸£´Ù. 2018¡­2020³â »ç°ÇÀÇ °æ¿ì Æò±Õ °¡¹³ ±â°£ÀÌ 12°³¿ù·Î °áÁ¤µÇ¾ú´Ù.


1857³â¿¡¼­ 1860³â »çÀÌÀÇ °¡¹³¸¸ÀÌ Æò±Õ 13°³¿ù·Î ´õ ¿À·¡ Áö¼ÓµÇ¾ú´Ù. °úÇÐÀÚµéÀº °¡¹³À» ÇöÀç Åä¾ç ¼öºÐÀÌ 250³âÀÇ Àüü ±â°£ µ¿¾È 20%¿¡¸¸ µµ´ÞÇÏ´Â °ªº¸´Ù 2m ±íÀÌ·Î ¶³¾îÁö´Â ½Ã°£À¸·Î Á¤ÀÇÇß´Ù.


ÀÌ·¯ÇÑ ¿ª»çÀû °¡¹³À» À籸¼ºÇϱâ À§ÇØ °úÇÐÀÚµéÀº UFZ(Ç︧ȦÃ÷ ȯ°æ¿¬±¸¼¾ÅÍ)¿¡¼­ °³¹ßµÈ ¼ö¹® ¸ðµ¨ ½Ã½ºÅÛ(hydrological model system)ÀÎ mHMÀ» »ç¿ëÇß´Ù. ÀÌ È¯°æ ½Ã½ºÅÛ ¸ðµ¨À» »ç¿ëÇÏ¸é ¹«¾ùº¸´Ùµµ ¿Âµµ ¹× °­¼ö·®¿¡ ´ëÇÑ °ú°Å µ¥ÀÌÅÍ¿¡¼­ Åä¾ç ¼öºÐÀ» ¸ðµ¨¸µÇÒ ¼ö ÀÖ´Ù. Åä¾ç¼öºÐÀ» Àå±â ±â´ëÄ¡¿Í ºñ±³ÇÔÀ¸·Î½á Åä¾ç¼öºÐÁö¼ö¸¦ °è»êÇÒ ¼ö ÀÖ°í, °¡¹³»óŸ¦ ¿ªÀ¸·Î ÆÇ´ÜÇÒ ¼öµµ ÀÖ´Ù.

 

888888.gif

Áö³­ 250³â µ¿¾È À¯·´ÀÇ ÁÖ¿ä °¡¹³ »ç°ÇÀÇ Æ¯Â¡. (a) ¸ðµ¨ ½Ã¹Ä·¹À̼ÇÀ» ±â¹ÝÀ¸·Î 1766 ³â¿¡¼­ 2020 ³â »çÀÌÀÇ Æò±Õ °¡¹³ Áö¿ª ¹× ±â°£. ¿øÀÇ Å©±â´Â °¡¹³ÀÇ ÃÑ °­µµ¿¡ ÇØ´çÇϸç, (b) °¡¹³ °­µµÀÇ ½Ã°£¿¡ µû¸¥ ÁøÈ­. 2018-2020³â Çà»ç´Â ´Ù¸¥ ¸ðµç Çà»ç¿¡ ºñÇØ Àüü ±â°£ µ¿¾È °¡Àå ³ôÀº °¡¹³ °­µµ¸¦ °¡Áö°í ÀÖ´Ù.  [»çÁøÃâó(Photo source) = µ¶ÀÏ Ç︧ȦÃ÷ ȯ°æ¿¬±¸¼¾ÅÍ(UFZ)]

 

2018³âºÎÅÍ 2020³â±îÁöÀÇ °¡¹³ ±â°£ µ¿¾È ±â¿Â »ó½ÂÀº Áö³­ 250³â µ¿¾È À¯·´ÀÇ ¿¬Æò±Õ ±â¿Â°ú ºñ±³ÇÏ¿© ¼·¾¾ 2.8µµ »ó½ÂÇÏ¿© ¿ª»çÀû ±â·ÏÀ» °æ½ÅÇß´Ù.


UFZ ¸ðµ¨ÀÌÀÚ ³í¹®ÀÇ °øµ¿ ÀúÀÚÀÎ ·ÎÈ÷´Ï Äí¸¶¸£(Rohini Kumar) ¹Ú»ç´Â ¡°°ú°ÅÀÇ °¡¹³Àº Æò±Õ ±â¿ÂÀÌ °ÅÀÇ º¯ÇÏÁö ¾Ê´Â ´Ù¼Ò Ãß¿î °¡¹³À̾ú´Ù. °¡¹³ ±â°£ µ¿¾È Áö³­ ¼¼±âÀÇ ÁÖ¿ä °¡¹³ÀÇ ÀüÇüÀÎ °­¼ö·®ÀÌ ¾à 20% °¨¼ÒÇÏ°í ±â¿ÂÀÌ »ó½ÂÇÏ¸é ±× ¿µÇâÀº ÈξÀ ´õ ½É°¢ÇÏ´Ù¡±°í ¸»ÇÑ´Ù.


ÀÌ°ÍÀº ÈξÀ ´õ ¸¹Àº ¹°ÀÌ Áõ¹ßÇϱ⠶§¹®ÀÌ´Ù. ÀÌ °¡¹³ ±â°£ µ¿¾È ¹° ºÎÁ·ÀÇ °á°ú´Â ³ó¾÷À» »ç¿ëÇÏ´Â °úÇÐÀڵ鿡 ÀÇÇØ ÀÔÁõµÇ¾ú´Ù. ¹Ð, ¿Á¼ö¼ö, º¸¸®ÀÇ °æ¿ì 2018³â¿¡¼­ 2020³â »çÀÌÀÇ Æò±Õ ¿¬°£ ÀÛ¹° ¼öÈ®·®À» 1961³â¿¡¼­ 2021³â »çÀÌÀÇ ¼öÈ®·®°ú ºñ±³Çß´Ù.


¡á Á¶»ç °á°ú(The finding)

ÁÖ·Î °¡¹³¿¡ ¿µÇâÀ» ¹ÞÀº ±¹°¡µé¿¡¼­´Â ¼öÈ®·®ÀÌ Å©°Ô °¨¼ÒÇߴµ¥, ¿¹¸¦ µé¾î, º£³×·è½º ±¹°¡, µ¶ÀÏ°ú ÇÁ¶û½º¿¡¼­´Â 20¡­40%, µ¶ÀÏÀÇ ¹ÐÀº 17.5%, º¸¸®´Â °ÅÀÇ À¯·´ Àü¿ª¿¡¼­ 10%±îÁö ¶³¾îÁ³´Ù.


À¯·´ÀÇ °¡¹³ÀÌ ¹Ì·¡¿¡ ¾î¶»°Ô ¹ßÀüÇÒ °ÍÀÎÁöµµ Áö±¸ ¿Â³­È­ÀÇ Á¤µµ¿¡ ´Þ·Á ÀÖ´Ù. ¹Ì·¡ÀÇ ¿Â½Ç°¡½º ¹èÃâ¿¡ ´ëÇÑ µÎ °¡Áö ½Ã³ª¸®¿À¿¡ ´ëÇØ °úÇÐÀÚµéÀº °¡´ÉÇÑ °¡¹³ ¹üÀ§¿Í Áö¼Ó ±â°£À» ¸ðµ¨¸µÇß´Ù. ÀÌ·¯ÇÑ ¼ÒÀ§ ´ëÇ¥ ³óµµ °æ·Î(Representative Concentration Pathways ; RCP)´Â ¿Â½Ç °¡½º ¹èÃâ·®ÀÌ 2100³â±îÁö ¿ÏÈ­µÉ °ÍÀÎÁö(RCP 4.5) ¾Æ´Ï¸é °è¼Ó °¨¼ÒÇÒ °ÍÀÎÁö(RCP 8.5) ¼³¸íÇÑ´Ù.


°úÇÐÀÚµéÀº RCP 4.5 ½Ã³ª¸®¿À¿¡¼­ Æò±Õ °¡¹³ ±â°£ÀÌ ÃÖ´ë 100°³¿ù±îÁö Å©°Ô Áõ°¡ÇÏ´Â ¹Ý¸é, °¡¹³ÀÇ ¹üÀ§´Â À¯·´ Áö¿ªÀÇ ÃÖ´ë 50%·Î ºñ±³Àû ¿Â°ÇÇÏ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù. ¹Ý¸é¿¡ RCP 8.5 ½Ã³ª¸®¿À´Â ´Ù¸£´Ù. Æò±Õ °¡¹³ ±â°£Àº 200°³¿ù ÀÌ»óÀÌ µÉ ¼ö ÀÖÀ¸¸ç À¯·´ÀÇ ÃÖ´ë 70%°¡ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ´Ù.


³í¹®ÀÇ °øµ¿ÀúÀÚÀÌÀÚ UFZÀÇ ÁöÇ¥¼ö¹®ÇÐ(Land Surface Hydrology) ¿öÅ·±×·ì ´ëÇ¥ÀÎ ·çÀ̽º »ç¸¶´Ï¿¡°í(Luis Samaniego) ¹Ú»ç´Â ¡°Á¤Ã¥ ÀÔ¾ÈÀÚµéÀº ¾ÕÀ¸·Î °¡¹³ÀÌ ÈξÀ ´õ ½ÉÇØÁú ¼ö ÀÖ´Ù´Â »ç½Ç¿¡ ´ëºñÇØ¾ß ÇÑ´Ù. À̴ ƯÈ÷ ³ó¾÷ Á¤Ã¥¿¡ °æÁ¾À» ¿ï·Á ÀÓ¹ÚÇÑ ¹° ºÎÁ·¿¡ ´ëÇÑ ÀûÀýÇÑ Á¶Ä¡¸¦ ó¸®ÇØ¾ß ÇÑ´Ù¡±¶ó°í °­Á¶ÇÑ´Ù. 


Áö¿ªÀûÀ¸·Î ±¸Ã¼ÀûÀ¸·Î ¿¹¸¦ µé¾î ÁöÇÏ ÀúÀå ½Ã¼³, Áö´ÉÇü °ü°³ ±â¼ú ¶Ç´Â ³»¿­¼º ½Ä¹° Ç°Á¾ÀÇ ¹ø½Ä°ú °°Àº ´ë±Ô¸ð Àú¼öÁöÀÇ »ý¼ºÀÌ µÉ ¼ö ÀÖ´Ù. 


Âü¿©ÇÏ´Â UFZ °úÇÐÀÚµéÀÇ ¿¬±¸ ÀÛ¾÷Àº µ¶ÀÏ ¿¬±¸Àç´Ü(German Research Foundation)°ú üÄÚ °úÇÐÀç´Ü(Czech Science Foundation)ÀÇ ÀÚ±Ý Áö¿øÀ» ¹Þ¾Æ ¾çÀÚ ÇÁ·ÎÁ§Æ®ÀÎ ¡®XEROS(eXtreme EuRopean drOughtS : °ú°Å, ÇöÀç ¹× ¹Ì·¡ À̺¥Æ®ÀÇ ´ÙÁß ¸ðµ¨ ÇÕ¼º)¡¯ÀÇ ÀϺηΠ¼öÇàµÇ¾ú´Ù.

 

99999.gif

(c-e) Áöµµ´Â ¼¼ °¡Áö ÁÖ¿ä °¡¹³ »ç°Ç µ¿¾È ¸î ´Þ µ¿¾È Æò±Õ °¡¹³ ±â°£ÀÇ ºÐÆ÷¸¦ º¸¿©ÁØ´Ù. ÁöµµÀÇ ´ÙÀ̾î±×·¥Àº °¢ °¡¹³ ±â°£ µ¿¾È °ø°£ Ç¥ÇöÀÌ ¾ó¸¶³ª Å«Áö¸¦ º¸¿©ÁØ´Ù.  [»çÁøÃâó(Photo source) = µ¶ÀÏ Ç︧ȦÃ÷ ȯ°æ¿¬±¸¼¾ÅÍ(UFZ)]

 

¡á ÃâÆÇ(Publication)

¿Ãµå¸®Ä¡ ¶óÄÚº¤(Oldrich Rakovec), ·çÀ̽º »ç¸¶´Ï¿¡°í(Luis Samaniego), ºñÅ» Çϸ®(Vittal Hari), ¾ß´Ï½º ¸¶¸£ÄڴϽº(Yannis Markonis), º¸ÀÌƮġ ¸ð¶óº¤(Vojtch Moravec), ½ºÅ×ÆÇ Åä¹ö(Stephan Thober), ¸¶Æ¾ ÇϳÚ(Martin Hanel),  ·ÎÇÏ´Ï Äí¸¶¸£(Rohini Kumar) : 2018¡­2020 ´Ù³â °¡¹³Àº À¯·´¿¡¼­ »õ·Î¿î  »õ·Î¿î ±âÁØÀ» ¼¼¿ü´Ù. Áö±¸ÀÇ ¹Ì·¡(Earth's Future), https://doi.org/10.1029/2021EF002394


[¿ø¹®º¸±â]


New drought benchmark for Europe

Drought in Europe from 2018 to 2020 was most intense in over 250 years


These were days, months and years that many will come to remember: the drought from 2018 to 2020. An international team of researchers led by scientists from the Helmholtz Centre for Environmental Research (UFZ) has succeeded in categorizing the historical dimensions of this event. 


Based on their findings, no drought covering such a large area for an extended period and coinciding with warmer temperature has occurred in Europe since the middle of the 18th century. The years from 2018 to 2020 thus represent a new benchmark for droughts. 


Because such an unprecedented event is likely to occur more frequently in the future, the scientists urgently recommend the development and implementation of suitable, regionally adapted drought prevention measures.


Withered meadows and fields, dry stream beds, dead forests, and reduced power plant outputs - the drought years of 2018, 2019 and 2020 were exceptional and had substantial impacts on nature and the economy. Previously it was not clear where they should be classified in their historical dimension. 


Now we know

"The 2018 to 2020 drought sets a new benchmark for droughts in Europe", says Dr. Oldrich Rakovec, UFZ modeller and lead author of the article published in the Earth¡¯s Future journal of the American Geophysical Union. The scientists documented this with a large compilation of data and modelling techniques which allowed them to reconstruct historical droughts back to 1766 and comparing their extents with the drought of 2018 to 2020. 


For example, the drought between 2018 and 2020 affected 36 percent of Europe's land area, especially in Central Europe such as Germany, France and the Czech Republic. "No other drought event in the past more than 250 years has had such a large spatial extent as this one," explains Oldrich Rakovec. 


The total duration of the drought event in Europe, which began in April 2018 and initially ended in December 2020, was also exceptionally long: 33 months. Only the drought between 1857 and 1860 lasted a little longer with a total of 35 months. In addition, the drought from 2018 to 2020 continued in 2021 and 2022 in the soil volume under consideration to a depth of 2 meters.


 "Although the year 2021 was a bit wetter and has supplied the topsoil, which is important for agriculture, well with water, the moisture has not penetrated everywhere to greater depths," says the UFZ modeler.


The average drought duration in the 50 x 50 km grid cells into which the scientists divided Europe for their model was also exceptionally long. Because a drought event develops dynamically over space and time, i.e. begins at one point, then develops and finally ends elsewhere, this value differs from the total duration of the drought event. For the 2018-2020 event, an average drought duration of 12 months was determined.


Only the drought from 1857 to 1860 lasted longer with an average of 13 months. The scientists defined drought as the time at which the current soil moisture falls to a depth of 2 meters below the value that is only reached in 20 percent of the years during the entire period of 250 years. 


To reconstruct these historical droughts, the scientists used the hydrological model system mHM, which was developed at the UFZ. With this environmental system model, soil moisture can be modelled from past data on temperature and precipitation, among other things. By comparing the soil moisture with the long-term expected value, the soil moisture index can be calculated and the drought state can also be determined in retrospect.


During the drought period 2018 to 2020, the increase in air temperature also reached a historic record with an increase of 2.8 degrees Celsius compared to the annual average temperature in Europe over the past 250 years.


 "The droughts in the past were rather cold droughts in which the average temperature hardly changed," says Dr. Rohini Kumar, UFZ modeler and co-author of the paper. If, during a drought period, the anomalies typical of major droughts of the past centuries of precipitation decline of around 20 percent and the increase in temperature come together, the effects are much more serious. 


This is because significantly more water evaporates. The consequences of the lack of water during this drought event were demonstrated by the scientists using agriculture. For wheat, corn and barley, they compared the average annual crop yields between 2018 and 2020 with those between 1961 and 2021. 


The finding

In the countries mainly affected by the drought, harvests fell significantly - for maize, for example, in the Benelux countries, Germany and France between 20 and 40 percent, for wheat in Germany up to 17.5 percent and for barley up to 10 percent almost throughout Europe.


How droughts in Europe will develop in the future also depends on the extent of global warming. For two scenarios of future greenhouse gas emissions, the scientists modelled the possible extent of droughts and their duration. These so-called Representative Concentration Pathways (RCP) describe whether greenhouse gas emissions will be moderate by the year 2100 (RCP 4.5) or continue unabated (RCP 8.5). 


The scientists found that in an RCP 4.5 scenario, the average drought duration increases significantly to up to 100 months, while the extent of droughts is comparatively moderate with up to 50 percent of the area of Europe. The RCP 8.5 scenario, on the other hand, is different: the average duration of a drought could be more than 200 months, and up to 70 percent of Europe could be affected. 


"Policymakers should be prepared for the fact that droughts could be much stronger in the future. This should be a wake-up call, especially for agricultural policy, to deal with suitable measures against the impending water shortage," says Dr. Luis Samaniego, co-author of the paper and head of the Land Surface Hydrology working group at the UFZ. 


Regionally specific, these could be, for example, the creation of large water reservoirs, such as underground storage facilities, intelligent forms of irrigation technology or the breeding of heat-resistant plant varieties.


The research work of the participating UFZ scientists was carried out as part of the bilateral project XEROS (eXtreme EuRopean drOughtS: multimodel synthesis of past, present and future events) and funded by the German Research Foundation and the Czech Science Foundation.


Publication

Oldrich Rakovec, Luis Samaniego, Vittal Hari, Yannis Markonis, Vojt?ch Moravec, Stephan Thober, Martin Hanel, Rohini Kumar: The 2018-2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth's Future, https://doi.org/10.1029/2021EF002394


[Ãâó=UFZ(https://www.ufz.de/index.php?de=36336&webc_pm=16/2022) / 2022³â 5¿ù 16ÀÏÀÚ º¸°í¼­]

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [È£ÁÖ] È£ÁÖ ½ÅÀç»ý¿¡³ÊÁöÀÇ Æ®·»µå¸¦ ÇÑ ´«¿¡, Smart Energy EXPO 2022 Âü°ü±â
´ÙÀ½±Û [½º¿þµ§] ¾ËÆĶó¹ß, Ȳ»ê°øÀå¿¡ ÆÇÇü ¿­±³È¯±â °ø±Þ
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.