Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ¹°»ê¾÷±â¼ú > ÃֽŴº½º
[¹Ì±¹] ž籤À» ¿¬·á·Î ÀúÀåÇϱâ À§ÇÑ ¹° ºÐÇØ ±â¼ú
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.12.09 Á¶È¸¼ö 542
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ž籤À» ¿¬·á·Î ÀúÀåÇϱâ À§ÇÑ ¹° ºÐÇØ ±â¼ú
 

±¤ÇÕ¼º(Photosynthesis)À» ¸ð¹æÇÏ´Â ¹°ºÐÇØ ¼¿(Water-splitting Cell)Àº ž籤À» Èí¼öÇÏ¿© ¿¬·á¸¦ »ý»êÇÑ´Ù. ÀÌ·¯ÇÑ ¼¿À» ¼³°èÇϴµ¥ ÀÖ¾î ¾î·Á¿î Á¡Àº ž籤À» Èí¼öÇÏ°í ÀüÀÚ¸¦ »ý»êÇÏ´Â ¹ÝµµÃ¼¿Í Ã˸Å(Catalyst)ÀÇ Â¦À» ¸ÂÃß´Â ÀÏÀÌ´Ù. ¿©±â¼­ »ý»êµÈ ÀüÀÚµéÀº ¿¬·á¸¦ »ý»êÇϱâ À§ÇØ È°¿ëµÈ´Ù. ÀÌ¿Í °ü·ÃÇÏ¿© ¹Ì ¿À·¹°ï ´ëÇÐ(University of Oregon)ÀÇ ¿¬±¸ÁøÀº µÎ ¹°Áú °è¸é »çÀÌ¿¡ ÀüÀÚÀÇ È帧À» ¿¬±¸Çϱâ À§ÇÑ »õ·Î¿î ¹æ¾ÈÀ» Á¦½ÃÇÏ¿´´Ù. ¿¬±¸ÁøÀº ÀÌ ±â¼úÀ» ÅëÇÏ¿© ÀÌ¿ÂÀ» Åë°ú½Ãų ¼ö ÀÖ´Â Ã˸Ű¡ ´Ù¸¥ ÃË¸Å¿Í ºñ±³ÇÒ ¶§ ºñ±³Àû ¸¹Àº ¾çÀÇ ¿¡³ÊÁö¸¦ »ý»êÇÒ ¼ö ÀÖ´Â °è¸éÀ» Çü¼ºÇÑ´Ù´Â °ÍÀ» ¹ß°ßÇÏ¿´´Ù.

¹° ºÐÇØ °øÁ¤Àº ¼ö¼Ò(Hydrogen)¿Í °°ÀÌ Àç»ý°¡´ÉÇÑ È­ÇÐ ¿¬·áÀÇ ÇüŸ¦ Á¦°øÇÔÀ¸·Î½á ž翡³ÊÁöÀÇ ´ë±Ô¸ð·Î º¯È¯ ¹× ÀúÀå¿¡ Áß¿äÇÑ ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÑ´Ù. ÀüÇÏ°¡ ºÐ¸®µÇ´Â ¹° ºÐÇØ °è¸éÀ» Á÷Á¢ÀûÀ¸·Î Á¶»çÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» °³¹ßÇÏ´Â ÀÏÀº ž籤°ú ¹°·ÎºÎÅÍ ¼ö¼Ò¸¦ »ý»êÇÏ´Â ÀåÄ¡¸¦ º¸´Ù È¿À²ÀûÀ¸·Î °³¹ßÇÒ ¼ö ÀÖµµ·Ï µµ¿òÀ» ÁØ´Ù. ¶ÇÇÑ À̹ø ¿¬±¸°á°ú¸¦ ÅëÇØ °³¼±µÈ °è¸é¿¡¼­ ÀüÇÏ À̵¿°ú °ü·ÃÇÑ ±âº»ÀûÀÎ Áú¹®µé¿¡ ´ëÇØ ´äÀ» ¾òÀ» ¼ö ÀÖ´Ù.

°íÈ¿À² ¹° ºÐÇØ Å¾çÀåÄ¡¸¦ °³¹ßÇϴµ¥ ÀÖ¾î µµÀüÀº ÃË¸Å¿Í ¹ÝµµÃ¼ »çÀÌÀÇ °è¸é¿¡¼­ È°µ¿ÇÏ°í ÀÖ´Â ÀüÀÚ¿¡ ´ëÇÑ Á÷Á¢ÀûÀÌ°í Á¤·®ÀûÀÎ Á¤º¸°¡ ºÎÁ·ÇÏ´Ù´Â °ÍÀÌ´Ù. Ã˸ſ¡ ´ëÇÑ ÀÌÇصµ¸¦ ³ôÀ̱â À§ÇØ ¿¬±¸ÁøÀº ´ÜÀÏ °áÁ¤ ƼŸ´½ »êÈ­¹° Àü±Ø¿¡ Àü±âÀûÀ¸·Î Á¢ÃËÇÏ¿© ´Ù¾çÇÑ Ã˸Ÿ·À» Çü¼ºÇÏ¿´´Ù. À̵éÀº »õ·Î¿î ÀÌÀü±Ø ±¤Àü±âÈ­ÇÐ ±â¼ú(Dual-electrode Photoelectrochemistry)À» »ç¿ëÇÏ¿© ¾çÂÊ ¹°Áú¿¡ ´ë·¡ µ¶¸³ÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ°í Àü¾Ð ¹× Àü·ù¸¦ Á¦¾îÇÔÀ¸·Î½á Á÷Á¢ÀûÀ¸·Î ¹ÝµµÃ¼¿Í Ã˸Š»çÀÌÀÇ °è¸éÀ» Á¶»çÇÒ ¼ö ÀÖ¾ú´Ù. ÀÌ·¯ÇÑ Á¢±Ù¹æ¹ýÀ» ÅëÇØ ¿¬±¸ÁøÀº Ã˸ÅÀÇ ÀüÇÏÃàÀû ¹× Àü¾Ðº¯È­¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. Ni(OH)2/NiOOH(nickel hydroxide/nickel oxyhydroxide)¿Í °°Àº ·¹µ¶½º È°¼º ÀÌ¿ÂÅõ°ú¼º Ã˸Ŵ ÀûÀÀÀû ¹ÝµµÃ¼-Ã˸ŠÁ¢ÇÕÀ» ¸¸µé¾ú´Ù. ¿©±â¼­ ÀûÀÀÀû (Adaptive) Á¢ÇÕÀ̶ó´Â ¸»Àº Ã˸ÅÀÇ »êÈ­ Á¤µµ¿¡ µû¶ó È¿°úÀûÀÎ ¼îƮŰ À庮(Schottky Barrier) ³ôÀÌ°¡ º¯È­ÇÑ´Ù´Â ÀǹÌÀÌ´Ù.

¹Ý´ë·Î ÀÌ¿ÂÀÌ Åõ°úµÇÁö ¸øÇÏ´Â À̸®Æ¬ »êÈ­¹° ±â¹ÝÀÇ Ã˸Ŵ ¼îƮŰ À庮 ³ôÀÌ°¡ À¯ÁöµÇ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÀÌ»êȭƼŸ´½¿¡ ´ÏÄÌ »êÈ­¹°À» ¿­ÀûÀ¸·Î ÁõÂøÇÑ Ã˸Ÿ¦ ÀÌ¿Â Åõ°ú¼ºÀÇ Ni(OH)2/NiOOH·Î º¯È¯ÇÏ´Â °ÍÀº Áõ°¡µÈ °Ñº¸±â ±¤Àü¾Ð(Apparent Photovoltage)°ú ÃæÁøÀ²(Fill-factor)¿¡ °ü°è°¡ ÀÖÀ½À» º¸¿©ÁÖ¾ú´Ù. ¿¬±¸ÁøÀº ÀûÀÀÀû Á¢ÇÕ¿¡ ´ëÇÑ »õ·Î¿î ÀÌ·ÐÀ» Á¦¾ÈÇÏ¿´À¸¸ç ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ÀÌ·¯ÇÑ ÀÌ·ÐÀ» Àû¿ëÇÒ ¼ö ÀÖ¾ú´Ù. À̹ø ¿¬±¸¿¡ »ç¿ëµÈ ½Ã½ºÅÛÀÌ ±×¸® È¿À²ÀûÀÌÁö´Â ¾ÊÁö¸¸ ¿¬±¸°á°ú´Â °è¸éÀÇ À¯µ¿Àû Çൿ Ư¼º¿¡ ´ëÇØ ±âº»ÀûÀÎ ½Ã»çÁ¡À» Á¦°øÇϱ⠶§¹®¿¡ È¿À²ÀûÀÎ ¹ÝµµÃ¼-Ã˸ŠÀåÄ¡¸¦ ¼³°èÇϴµ¥ µµ¿òÀ» ÁÙ °ÍÀÌ´Ù. ¶ÇÇÑ ¿¬±¸ÁøÀº ÀûÀÀÀû ¹ÝµµÃ¼ Á¢ÇÕÀÇ »õ·Î¿î Á¾·ù¿¡ ´ëÇؼ­µµ ¼³¸íÇÏ¿´´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 12¿ù 9ÀÏ]

[¿ø¹®º¸±â]

Solar water splitting: Putting an extra 'eye' on surface reactions that store sunlight as fuel

Mimicking photosynthesis, water-splitting cells absorb sunlight and produce fuel. A challenge in designing such cells is pairing the semiconductor that absorbs sunlight and generates electrons with the catalyst that uses those electrons to produce fuel. Researchers introduced a novel way to study the flow of electrons at the interface of the two materials. Using this capability, they found that ion-permeable catalysts form interfaces that yield more energy relative to comparable -- but denser -- catalysts.

Water splitting provides a potential mechanism for the large-scale conversion and storage of solar energy in the form of a renewable chemical fuel, such as hydrogen. The invention of direct methods to probe charge-separating water-splitting interfaces enables the development of more efficient devices that produce hydrogen from sunlight and water. The discovery also sheds light on fundamental questions regarding charge-transfer at modified interfaces.

A bottleneck in the development of high-efficiency water-splitting solar devices has been a lack of direct, quantitative information regarding the electronic behavior of the interface between the catalyst and semiconductor. To better understand catalysts, researchers electrically contacted a single-crystal titanium dioxide electrode and coated it with various catalyst films. The semiconductor-catalyst interfaces were directly probed as they operated using a new dual-electrode photoelectrochemistry technique to independently monitor and control the voltage and current at both the materials. Using this approach, researchers watched the charge accumulate in the catalyst and change the catalyst's voltage. Redox-active ion-permeable catalysts, such as nickel hydroxide/nickel oxyhydroxide (Ni(OH)2/NiOOH), yielded "adaptive" semiconductor-catalyst junctions where the effective Schottky barrier height changed with the oxidation level of the catalyst.

In contrast, dense, ion-impermeable iridium oxide-based catalysts yielded constant-barrier-height "buried" junctions. Conversion of dense, thermally deposited nickel oxides on titanium dioxide into ion-permeable Ni(OH)2/NiOOH correlated with increased apparent photovoltage and fill-factor. The researchers proposed a new theory of adaptive junctions and applied the theory via numerical simulation. While the system used in the study is not efficient, these results provide fundamental insight into the dynamic behavior of interfaces that will help guide the design of efficient semiconductor-catalyst devices. They also illustrate a new class of adaptive semiconductor junctions.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û 2015³â 11¿ù Áß È¯°æ½Å±â¼ú ÀÎÁõ¡¤Æò°¡ ÇöȲ
´ÙÀ½±Û [½Ì°¡Æ÷¸£] PUB, EvoquaÀÇ Àü·ÂÀý°¨ ´ã¼öÈ­±â¼ú äÅÃ
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.