Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > »óÇϼöµµ > Çϼö/Æó¼ö
[¹Ì±¹] Çöó½ºÆ½ Á¦Ç°¼­ ¸ÅÀÏ ¼öÁ¶ °³ÀÇ ¹Ì¼¼Çöó½ºÆ½ ¹° ¼Ó ¹æÃâ
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2022.04.25 Á¶È¸¼ö 695
ÆÄÀÏ÷ºÎ

[¹Ì±¹] Çöó½ºÆ½ Á¦Ç°¼­ ¸ÅÀÏ ¼öÁ¶ °³ÀÇ ¹Ì¼¼Çöó½ºÆ½ ¹° ¼Ó ¹æÃâ

¹Ì NIST(±¹¸³Ç¥Áرâ¼ú¿ø), ¶ß°Å¿î ¹°¿¡ ³ëÃâµÉ ¶§, 1L´ç ¼öÁ¶ °³ÀÇ ³ª³ëÀÔÀÚ ¹æÃ⠹߰ß

4¿ù 20ÀÏ ¹ß°£ÇÑ  °úÇÐÀú³ÎÀÎ ¡ºÈ¯°æ°úÇаú ±â¼ú¡» ¿¡ ¿¬±¸°á°ú ¹ßÇ¥



¿ì¸®°¡ ½´ÆÛ¸¶ÄÏ¿¡¼­ »ç¿ëÇÏ´Â ½Ä·áÇ° ºÀÁöµç, ¼¤Çª³ª ¼¼Á¦ º´°ú °°Àº »ýÈ°¿ëÇ°À̵ç, Çöó½ºÆ½Àº ¿ì¸®¸¦ µÑ·¯½Î°í ÀÖ´Ù. Çöó½ºÆ½Àº Å« ¹°Ã¼·Î¼­¸¸ Á¸ÀçÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó ÀÌ·¯ÇÑ Å« Á¦Ç°µé·ÎºÎÅÍ ¹æÃâµÇ´Â ¹Ì¼¼ÇÑ ÀÔÀڷεµ Á¸ÀçÇÑ´Ù. ÀÌ ¹Ì¼¼Çöó½ºÆ½(microscopic plastic)µéÀº °á±¹ ȯ°æ¿¡ ³õÀÌ°Ô µÉ ¼ö ÀÖ°í, ±×°ÍµéÀº ¿ì¸® ¸öÀ¸·Î Èí¼öµÉ ¼ö ÀÖ´Ù.

 

¹Ì±¹ NIST(±¹¸³Ç¥Áرâ¼ú¿ø) ¿¬±¸ÁøÀº Ä¿ÇÇÄÅ°ú °°Àº ÀÏȸ¿ë À½·áÄÅÀ» ºÐ¼®Çß´Ù. Ä¿ÇÇÄÅÀº ¹°ÀÌ °¡¿­ µÉ ¶§ ÄÅÀÇ ¾ÈÂÊ ¾È°¨¿¡¼­ ¼öÁ¶ °³ÀÇ ³ª³ëÀÔÀÚ ¶Ç´Â ÀÛÀº Çöó½ºÆ½ ÀÔÀÚ¸¦ ¹æÃâÇÒ ¼ö ÀÖ´Ù. Çöó½ºÆ½ ÀÔÀÚ¸¦ º¸¿©ÁÖ´Â È®´ëµÈ ºÎºÐÀÌ ÀÖ´Â Ä¿ÇÇ ÄÅÀ» º¸¿©ÁØ´Ù. [»çÁøÃâó(Photo source) = NIST(±¹¸³Ç¥Áرâ¼ú¿ø)]

¹Ì±¹ NIST(±¹¸³Ç¥Áرâ¼ú¿ø) ¿¬±¸ÁøÀº Ä¿ÇÇÄÅ°ú °°Àº ÀÏȸ¿ë À½·áÄÅÀ» ºÐ¼®Çß´Ù. Ä¿ÇÇÄÅÀº ¹°ÀÌ °¡¿­ µÉ ¶§ ÄÅÀÇ ¾ÈÂÊ ¾È°¨¿¡¼­ ¼öÁ¶ °³ÀÇ ³ª³ëÀÔÀÚ ¶Ç´Â ÀÛÀº Çöó½ºÆ½ ÀÔÀÚ¸¦ ¹æÃâÇÒ ¼ö ÀÖ´Ù. Çöó½ºÆ½ ÀÔÀÚ¸¦ º¸¿©ÁÖ´Â È®´ëµÈ ºÎºÐÀÌ ÀÖ´Â Ä¿ÇÇ ÄÅÀ» º¸¿©ÁØ´Ù. [»çÁøÃâó(Photo source) = NIST(±¹¸³Ç¥Áرâ¼ú¿ø)]


¹Ì±¹ ±¹¸³Ç¥Áرâ¼ú¿ø(NIST; National Institute of Standards and Technology)ÀÇ ¿¬±¸¿øµéÀº ÀÌ·¯ÇÑ ¹Ì¼¼Çöó½ºÆ½À» ´õ Àß ÀÌÇØÇϱâ À§ÇØ ³Î¸® »ç¿ëµÇ´Â µÎ °¡Áö ¼ÒºñÀÚ Á¦Ç°À» ºÐ¼®Çß´Ù. ¿¬±¸¿øµéÀº Çöó½ºÆ½ Á¦Ç°µéÀÌ ¶ß°Å¿î ¹°¿¡ ³ëÃâµÉ ¶§, 1¸®ÅÍ(L) ´ç ¼öÁ¶ °³ÀÇ ³ª³ë ÀÔÀÚµéÀ» ¹° ¼ÓÀ¸·Î ¹æÃâÇÑ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù.


NIST(±¹¸³Ç¥Áرâ¼ú¿ø) ¿¬±¸ÁøÀº °úÇÐÀú³ÎÀÎ ¡ºÈ¯°æ°úÇаú ±â¼ú(Environmental Science and Technology)¡»¿¡ ¿¬±¸°á°ú¸¦ ¹ßÇ¥Çß´Ù.


NISTÀÇ È­ÇÐÀÚÀÎ Å©¸®½ºÅäÆÛ À帶À̽ºÅÍ(Christopher Zangmeister) ¿¬±¸¿øÀº ¡°¿©±â¼­ °¡Àå Áß¿äÇÑ Á¡Àº ¿ì¸®°¡ ¾îµð¸¦ º¸µçÁö Çöó½ºÆ½ ÀÔÀÚ°¡ ÀÖ´Ù´Â °ÍÀÌ´Ù. ±× °ÍµéÀÌ Á¤¸» ¸¹ÀÌ µé¾î ÀÖ´Ù. ¸®ÅÍ´ç ¼öÁ¶ °³ÀÌ´Ù. ±× °ÍÀÌ »ç¶÷À̳ª µ¿¹°¿¡°Ô °Ç°­¿¡ ³ª»Û ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ¿©ºÎ´Â ¾Ë ¼ö ¾ø´Ù. ¿ì¸®´Â ´ÜÁö ±×µéÀÌ ±×°÷¿¡ ÀÖ´Ù´Â °Í¿¡ ´ëÇØ ³ôÀº ÀڽۨÀ» °¡Áö°í ÀÖÀ» »ÓÀÌ´Ù¡±¶ó°í  ¸»Çß´Ù.


Çöó½ºÆ½ Àç·áÀÇ Á¾·ù´Â ¸Å¿ì ´Ù¾çÇÏÁö¸¸, ±×°ÍµéÀº ¸ðµÎ Å« ºÐÀÚµéÀÌ ¼­·Î ¿¬°áµÇ¾î Àִ õ¿¬ ¶Ç´Â Àΰ£ÀÌ ¸¸µç ¹°ÁúÀÎ °íºÐÀÚ·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. °úÇÐÀÚµéÀº ¹Ù´Ù¿Í ¸¹Àº ´Ù¸¥ ȯ°æ¿¡¼­ ÀÌ·¯ÇÑ ´õ Å« Çöó½ºÆ½À¸·ÎºÎÅÍ ¹Ì¼¼ÇÑ ÀÔÀÚµéÀ» ¹ß°ßÇß´Ù. ¿¬±¸¿øµéÀº ±× °ÍµéÀ» ¹Ì¼¼Çöó½ºÆ½(micro plastic)°ú ³ª³ëÇöó½ºÆ½(nano plastic)ÀÇ µÎ ±×·ìÀ¸·Î ºÐ·ùÇÑ´Ù.


¹Ì¼¼Çöó½ºÆ½Àº ÀϹÝÀûÀ¸·Î ±æÀÌ°¡ 5¹Ð¸®¹ÌÅÍ(mm)º¸´Ù ÀÛ°í À°¾ÈÀ¸·Î º¼ ¼ö ÀÖ´Â ¹Ý¸é, ³ª³ëÇöó½ºÆ½Àº 100¸¸ ºÐÀÇ 1m(1§­ ; ¸¶ÀÌÅ©·Î¹ÌÅÍ)º¸´Ù ÀÛ°í ´ëºÎºÐ Ç¥ÁØ Çö¹Ì°æÀ¸·Îµµ º¼ ¼ö ¾ø´Ù. ÃÖ±Ù ¿¬±¸´Â Æú¸®ÇÁ·ÎÇÊ·»(PP ; polypropylene) Á¥º´°ú ³ªÀÏ·Ð Çöó½ºÆ½ Ƽ¹é(tea bag)°ú °°ÀÌ ¾×ü¸¦ ´ã°Å³ª ¾×ü¿Í »óÈ£ ÀÛ¿ëÇÏ´Â ÀϺΠ¼ÒºñÀÚ Á¦Ç°ÀÌ ÀÌ·¯ÇÑ Çöó½ºÆ½ ÀÔÀÚ¸¦ ÁÖº¯ ¹° ¼ÓÀ¸·Î ¹æÃâÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.


±×µéÀÇ ¿¬±¸¿¡¼­ NIST ¿¬±¸¿øµéÀº µÎ °¡Áö Á¾·ùÀÇ »ó¾÷ÀûÀÎ Çöó½ºÆ½ Á¦Ç°À» Á¶»çÇß´Ù. ù°´Â º£ÀÌÅ· ¶óÀ̳Ê(baking liner)¿Í °°Àº ½ÄÇ° µî±ÞÀÇ ³ªÀÏ·Ð °¡¹æ(¼öºÐÀÌ ¼Õ½ÇµÇ´Â °ÍÀ» ¸·±â À§ÇØ º£ÀÌÅ· ÆÒ¿¡ ³õ¿©Áø Åõ¸íÇÑ Çöó½ºÆ½ ½ÃÆ®), ±×¸®°í Ä¿ÇÇ ÄÅ°ú °°Àº 1ȸ¿ë ¶ß°Å¿î À½·á ÄÅ. ±×µéÀÌ ºÐ¼®ÇÑ À½·á¼ö ÄÅÀº ¶óÀ̳ʷΠÁ¾Á¾ »ç¿ëµÇ´Â ºÎµå·´°í À¯¿¬ÇÑ Çöó½ºÆ½ Çʸ§ÀÎ Àú¹Ðµµ Æú¸®¿¡Æ¿·»(LDPE ; low-density polyethylene )À¸·Î ÄÚÆõǾú´Ù.


LDPE°¡ µé¾î°£ À½·á¼ö ÄÅÀº 100¡É¿¡¼­ 20ºÐ µ¿¾È ¹°¿¡ ³ëÃâµÇ¾ú´Ù. ÀÌ·¯ÇÑ Çöó½ºÆ½ Á¦Ç°¿¡¼­ ¹æÃâµÇ´Â ³ª³ë ÀÔÀÚ¸¦ ºÐ¼®Çϱâ À§ÇØ ¿¬±¸¿øµéÀº ¸ÕÀú ±×°ÍµéÀ» °¨ÁöÇÏ´Â ¹æ¹ýÀ» °áÁ¤ÇÒ ÇÊ¿ä°¡ ÀÖ¾ú´Ù.


Å©¸®½ºÅäÆÛ À帶À̽ºÅÍ(Christopher Zangmeister) ¿¬±¸¿øÀº ¡°ÀϹÝÀûÀÎ Å×ÀÌÅ© ¾Æ¿ô Ä¿ÇÇÀÜ¿¡ ¹° ÇÑ ÀÜÀ» ¸¶½Å´Ù°í »ó»óÇØ º¸¼¼¿ä. ¼ö½Ê¾ï °³ÀÇ ÀÔÀÚ°¡ ÀÖÀ» ¼ö ÀÖ°í, ¿ì¸®´Â ÀÌ ³ª³ëÇöó½ºÆ½À» ã´Â ¹æ¹ýÀ» ¾Ë¾Æ³»¾ß ÇÑ´Ù. ±×°ÍÀº ¸¶Ä¡ °ÇÃÊ´õ¹Ì¿¡¼­ ¹Ù´ÃÀ» ã´Â °Í°ú °°´Ù¡±¶ó°í ¸»Çß´Ù.


À帶À̽ºÅÍ ¿¬±¸¿øÀº ÀÌ¾î ¡°±×·¡¼­ ³ª¿Í µ¿·áµéÀº »õ·Î¿î Á¢±Ù¹ýÀ» »ç¿ëÇØ¾ß Çß´Ù. ¿ì¸®´Â ÄÅ¿¡ ÀÖ´Â ¹°À» °¡Á®´Ù°¡ ¹Ì¼¼ÇÑ ¾È°³¿¡ »Ñ¸®°í, ±× ¾È°³¿Í ¿ë¾× ¾È¿¡ ³²¾Æ ÀÖ´Â ¸ðµç °ÍÀ» ¸»¸®´Â ¹æ¹ýÀ» »ç¿ëÇß´Ù¡±¶ó°í µ¡ºÙ¿´´Ù. 


ÀÌ °úÁ¤À» ÅëÇØ ³ª³ëÀÔÀÚ´Â ¿ë¾×ÀÇ ³ª¸ÓÁö ºÎºÐÀ¸·ÎºÎÅÍ ºÐ¸®µÈ´Ù. ±× ±â¼ú ÀÚü´Â ÀÌÀü¿¡ ´ë±â ÁßÀÇ ÀÛÀº ÀÔÀÚµéÀ» °¨ÁöÇϱâ À§ÇØ »ç¿ëµÇ¾ú´Ù. ¡°±×·¡¼­, ¿ì¸®´Â ¹ÙÄû¸¦ ÀçâÁ¶ÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó ±×°ÍÀ» »õ·Î¿î ¿µ¿ª¿¡ Àû¿ëÇÏ´Â °ÍÀÌ´Ù¡±¶ó°í À帶À̽ºÅÍ´Â °­Á¶Çß´Ù.


¾È°³°¡ °ÇÁ¶µÈ ÈÄ, ±× ¾È¿¡ ÀÖ´Â ³ª³ë ÀÔÀÚµéÀº Å©±â¿Í ÀüÇÏ¿¡ µû¶ó ºÐ·ùµÇ¾ú´Ù. ±× ÈÄ ¿¬±¸¿øµéÀº ƯÁ¤ÇÑ Å©±â, ¿¹¸¦ µé¾î 100³ª³ë¹ÌÅÍ(§¬) Á¤µµÀÇ ³ª³ë ÀÔÀÚ¸¦ ƯÁ¤ÇÏ°í ±×°ÍµéÀ» ÀÔÀÚ Ä«¿îÅÍ¿¡ Àü´ÞÇÒ ¼ö ÀÖ¾ú´Ù. 


³ª³ëÀÔÀÚ´Â ¾ËÄÚ¿ÃÀÇ ÀÏÁ¾ÀÎ ºÎź¿ÃÀÇ ¶ß°Å¿î Áõ±â¿¡ ³ëÃâµÇ¾ú´Ù°¡ ºü¸£°Ô ³Ã°¢µÇ¾ú´Ù. ¾ËÄÚ¿ÃÀÌ ÀÀÃàµÇ¸é¼­ ÀÔÀÚ°¡ ³ª³ë¹ÌÅÍ Å©±â¿¡¼­ ¸¶ÀÌÅ©·Î¹ÌÅÍ Å©±â·Î ºÎÇ®¾î ¿Ã¶ó ÈξÀ ´õ ½±°Ô ŽÁöÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ÀÌ °úÁ¤Àº ÀÔÀÚ¸¦ ¼¼´Â ÄÄÇ»ÅÍ ÇÁ·Î±×·¥¿¡ ÀÇÇØ ÀÚµ¿È­µÇ°í ½ÇÇàµÈ´Ù.


¿¬±¸¿øµéÀº ¶ÇÇÑ ³ª³ëÀÔÀÚ¸¦ Ç¥¸é¿¡ ³õ°í °í¿¡³ÊÁö ÀüÀÚºöÀ» »ç¿ëÇÏ¿© »ùÇÃÀÇ °íÇØ»óµµ À̹ÌÁö¸¦ Âï´Â ÁÖ»çÀüÀÚÇö¹Ì°æ(scanning electron microscopy)°ú °¡½º, °íü ¶Ç´Â ¾×üÀÇ Àû¿Ü¼± ½ºÆåÆ®·³À» Æ÷ÂøÇÏ´Â ±â¼úÀΠǪ¸®¿¡ º¯È¯ Àû¿Ü¼± ºÐ±¤¹ý(Fourier-transform ; Àû¿Ü¼± ºÐ±¤¹ý)À¸·Î ³ª³ëÀÔÀÚÀÇ È­ÇÐÀû ±¸¼ºÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. ÇÔ²² »ç¿ëµÈ ÀÌ·¯ÇÑ ¸ðµç ±â¼úÀº ³ª³ëÀÔÀÚÀÇ Å©±â¿Í ±¸¼º¿¡ ´ëÇÑ ¿ÏÀüÇÑ ±×¸²À» Á¦°øÇß´Ù.


±×¸®µå¿¡ ÀÖ´Â 4°³ÀÇ À̹ÌÁö´Â Á¡Á¡ ´õ Å« Çöó½ºÆ½ ÀÔÀÚ¸¦ º¸¿©ÁØ´Ù. Ä¿ÇÇÄÅ°ú °°Àº ÀÏȸ¿ë À½·áÄÅ¿¡¼­ ¹ß°ßµÇ´Â ³ª³ëÀÔÀÚÀÇ °íÇØ»óµµ À̹ÌÁö´Â ¸¶ÀÌÅ©·Î¹ÌÅÍ(§­ ; ¹é¸¸ ºÐÀÇ 1m) ±Ô¸ðÀÌ´Ù. [»çÁøÃâó(Photo source) = NIST(±¹¸³Ç¥Áرâ¼ú¿ø)]

±×¸®µå¿¡ ÀÖ´Â 4°³ÀÇ À̹ÌÁö´Â Á¡Á¡ ´õ Å« Çöó½ºÆ½ ÀÔÀÚ¸¦ º¸¿©ÁØ´Ù. Ä¿ÇÇÄÅ°ú °°Àº ÀÏȸ¿ë À½·áÄÅ¿¡¼­ ¹ß°ßµÇ´Â ³ª³ëÀÔÀÚÀÇ °íÇØ»óµµ À̹ÌÁö´Â ¸¶ÀÌÅ©·Î¹ÌÅÍ(§­ ; ¹é¸¸ ºÐÀÇ 1m) ±Ô¸ðÀÌ´Ù. [»çÁøÃâó(Photo source) = NIST(±¹¸³Ç¥Áرâ¼ú¿ø)]

 

±×µéÀÇ ºÐ¼®°ú °üÂû¿¡¼­, ¿¬±¸¿øµéÀº ³ª³ë ÀÔÀÚÀÇ Æò±Õ Å©±â°¡ 30 ³ª³ë¹ÌÅÍ(§¬)¿¡¼­ 80 ³ª³ë¹ÌÅÍ »çÀÌÀ̸ç, 200 ³ª³ë¹ÌÅÍ ÀÌ»óÀº °ÅÀÇ ¾ø´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù. ¶ÇÇÑ ½ÄÇ° µî±ÞÀÇ ³ªÀϷп¡¼­ ¶ß°Å¿î ¹°¿¡ ¹æÃâµÇ´Â ³ª³ë ÀÔÀÚÀÇ ³óµµ´Â 1ȸ¿ë À½·á ÄÅ¿¡ ºñÇØ 7¹è³ª ³ô¾Ò´Ù.


Å©¸®½ºÅäÆÛ À帶À̽ºÅÍ(Christopher Zangmeister) ¿¬±¸¿øÀº ¡°Áö³­ 10³â µ¿¾È °úÇÐÀÚµéÀº ¿ì¸®°¡ ȯ°æÀ» º¸´Â ¸ðµç °÷¿¡¼­ Çöó½ºÆ½À» ¹ß°ßÇß´Ù. »ç¶÷µéÀº ºùÇÏÀÇ È£¼ö ¹Ù´ÚÀÎ ³²±Ø ´ë·úÀÇ ´«À» °üÂûÇß°í ¾à 100³ª³ë¹ÌÅÍ(§¬) ÀÌ»óÀÇ ¹Ì¼¼ Çöó½ºÆ½À» ¹ß°ßÇߴµ¥, ÀÌ°ÍÀº ±×°ÍµéÀÌ ¼¼Æ÷¿¡ µé¾î°¡ ½ÅüÀûÀÎ ¹®Á¦¸¦ ÀÏÀ¸Å³ ¸¸Å­ ÃæºÐÈ÷ ÀÛÁö ¾Ê´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù¡±¶ó°í ¸»Çß´Ù.


À帶À̽ºÅÍ ¿¬±¸¿øÀº ƯÈ÷,¡°ÀÌ·¯ÇÑ ³ª³ë ÀÔÀÚµéÀº ¼¼Æ÷ ¾È¿¡ µé¾î°¡ ±â´ÉÀ» ¹æÇØÇÒ ¼ö Àֱ⠶§¹®¿¡ ¸Å¿ì ÀÛ°í Å« ¹®Á¦À̱⠶§¹®¿¡ ¿ì¸®ÀÇ ¿¬±¸´Â ´Ù¸£Áö¸¸ ¶ÇÇÑ ¾Æ¹«µµ ±×·¸°Ô °áÁ¤ÇÏÁö ¾Ê¾Ò´Ù¡±°í °­Á¶Çß´Ù.


¹Ì±¹ ½ÄÇ°ÀǾ౹(FDA)Àº ¿ì¸®°¡ ¸Ô´Â À½½ÄÀ̳ª ¸¶½Ã´Â ¹°¿¡ ´ê´Â Çöó½ºÆ½À» ±ÔÁ¦ÇÑ´Ù. ±× ±â°üÀº ¹«¾ùÀÌ ¾ÈÀüÇÑÁö¸¦ °áÁ¤Çϱâ À§ÇÑ ±âÁØ°ú ¾ÈÀü ´ëÃ¥À» ¸¶·ÃÇß´Ù. FDAÀÇ ¿¬±¸¿øµéÀº ÀÌ Çöó½ºÆ½¿¡ ´ëÇØ ¾ö°ÝÇÑ Å×½ºÆ®¸¦ ÇÏ°í ¶ß°Å¿î ¹°¿¡ ³ëÃâµÇ¾úÀ» ¶§ ¾ó¸¶³ª ¸¹Àº Çöó½ºÆ½ µ¢¾î¸®°¡ ¼Õ½ÇµÇ´ÂÁö¸¦ ÃøÁ¤ÇÑ´Ù. 


¿¹¸¦ µé¾î, FDA´Â ½ÄÇ° µî±Þ ³ªÀÏ·Ð(Ƽ¹é¿¡ »ç¿ëµÇ´Â °Í°ú °°Àº)ÀÌ °í¿Â Á¶°Ç¿¡¼­ Áú·®ÀÇ 1%±îÁö ¾ÈÀüÇÏ°Ô ¼Õ½ÇµÉ ¼ö ÀÖ´Ù°í °áÁ¤Çß´Ù. ±×µéÀÇ »õ·Î¿î ±â¼úÀ» »ç¿ëÇÑ NISTÀÇ ¿¬±¸¿¡¼­ ¿¬±¸¿øµéÀº Áú·®ÀÇ 10ºÐÀÇ 1ÀÌ ¼Õ½ÇµÇ¾ú´Ù´Â °ÍÀ» ¹ß°ßÇߴµ¥, ÀÌ°ÍÀº ¾ÈÀüÇÏ´Ù°í ¿©°ÜÁö´Â °Í¿¡ ´ëÇÑ ÇöÀçÀÇ FDA ÇÑ°èÄ¡º¸´Ù ÈξÀ ³·´Ù.


À帶À̽ºÅÍ ¿¬±¸¿øÀº ¡°Ä¿ÇÇÀÜ°ú °°Àº »ùÇÿ¡¼­ ¹°¿¡ ¹æÃâµÇ´Â LDPE¸¦ ÃøÁ¤Çϱâ À§ÇØ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â Å×½ºÆ®´Â ¾øÁö¸¸ ³ªÀÏ·Ð Çöó½ºÆ½¿¡ ´ëÇÑ Å×½ºÆ®´Â ÀÖ´Ù¡±°í ¾ð±ÞÇß´Ù. 


ÀÌ ¿¬±¸ÀÇ °á°ú´Â ±×·¯ÇÑ Å×½ºÆ®¸¦ °³¹ßÇÏ·Á´Â ³ë·Â¿¡ µµ¿òÀÌ µÉ ¼ö ÀÖ´Ù. ±×µ¿¾È ¯¸¶À̽ºÅÍ ¿¬±¸¿ø°ú ±×ÀÇ ¿¬±¸ÆÀÀº Çöó½ºÆ½ ÆÄÀÌÇÁ¿¡ ÀúÀåµÈ Á÷¹°, ¸é Æú¸®¿¡½ºÅ׸£, ºñ´ÒºÀÁö, ¹°°ú °°Àº Ãß°¡ÀûÀÎ ¼ÒºñÀÚ Á¦Ç°°ú Àç·á¸¦ ºÐ¼®Çß´Ù.


ÀÌ ¿¬±¸ÀÇ ¿¬±¸°á°ú´Â ºÐ¼®µÈ ´Ù¸¥ À¯ÇüÀÇ ÀÚ·áµéÀÇ ¿¬±¸ °á°ú¿Í °áÇյǾî ÇâÈÄ ÀÌ ºÐ¾ßÀÇ »õ·Î¿î ¿¬±¸ ¹æ¹ýÀ» ¿­ °Í¡±À̶ó¸é¼­ ¡°ÀÌ ÁÖÁ¦¿¡ ´ëÇÑ ´ëºÎºÐÀÇ ¿¬±¸´Â µ¿·á °úÇÐÀÚµéÀ» ±³À°Çϱâ À§ÇØ ÀÛ¼ºµÇ¾ú´Ù. ÀÌ ³í¹®Àº °úÇÐÀÚµéÀ» ±³À°½ÃÅ°°í ´ëÁßÀÇ °ü½ÉÀ» ²ô´Â µÎ °¡Áö ¸ðµÎ¸¦ ÇÒ °ÍÀÌ´Ù¡±¶ó°í À帶À̽ºÅÍ ¿¬±¸¿øÀº ¸»Çß´Ù.


³í¹®¸í : ¡®ÀϹÝÀûÀÎ ÀÏȸ¿ë ¼ÒºñÀÚ Çöó½ºÆ½ Á¦Ç°Àº Á¤»óÀûÀÎ »ç¿ë Áß¿¡ L´ç ¼öÁ¶ °³ÀÇ 100nm ÀÌÇÏÀÇ ³ª³ëÀÔÀÚ¸¦ ¹°¿¡ ¹æÃâÇÑ´Ù(Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use)¡¯. 


Å©¸®½ºÅäÆÛ À帶À̽ºÅÍ(Christopher Zangmeister), Á¦ÀÓ½º ·¡µå´Ï(ames Radney), Ä¿Æ® º¥Å©½ºÅ¸ÀÎ(Kurt Benkstein), ¹öÅ© Ä®¶ó´Ï¾È( Berc Kalanyan) °øµ¿ÀúÀÚ.


¡ºÈ¯°æ °úÇаú ±â¼ú(Environmental Science and Technology)¡». 2022³â 4¿ù 20ÀÏ ¿Â¶óÀÎ Ãâ°£. DOI: 10.1021/acs.est.1c06768


[¿ø¹®º¸±â]


NIST Study Shows Everyday Plastic Products Release Trillions of Microscopic Particles Into Water


Plastics surround us, whether it¡¯s the grocery bags we use at the supermarket or household items such as shampoo and detergent bottles. Plastics don¡¯t exist only as large objects, but also as microscopic particles that are released from these larger products. These microscopic plastics can end up in the environment, and they can be ingested into our bodies. 


Now, researchers at the National Institute of Standards and Technology (NIST) have analyzed a couple of widely used consumer products to better understand these microscopic plastics. They found that when the plastic products are exposed to hot water, they release trillions of nanoparticles per liter into the water.


The NIST researchers published their findings in the scientific journal Environmental Science and Technology. 


¡°The main takeaway here is that there are plastic particles wherever we look. There are a lot of them. Trillions per liter. We don¡¯t know if those have bad health effects on people or animals. We just have a high confidence that they¡¯re there,¡± said NIST chemist Christopher Zangmeister. 


There are many different types of plastic materials, but they are all made up of polymers, natural or human-made substances composed of large molecules linked together. Scientists have found microscopic particles from these larger plastics in the oceans and many other environments. Researchers categorize them into two groups: micro- and nanoplastics. 


Microplastics are generally considered smaller than 5 millimeters in length and could be seen by the naked eye, while nanoplastics are smaller than one millionth of a meter (one micrometer) and most can¡¯t even be seen with a standard microscope. Recent studies have shown some consumer products that hold liquids or interact with them, such as polypropylene (PP) baby bottles and nylon plastic tea bags, release these plastic particles into the surrounding water. 


In their study, the NIST researchers looked at two types of commercial plastic products: food-grade nylon bags, such as baking liners - clear plastic sheets placed in baking pans to create a nonstick surface that prevents moisture loss - and single-use hot beverage cups, such as coffee cups. The beverage cups they analyzed were coated with low-density polyethylene (LDPE), a soft flexible plastic film often used as a liner. 


The LDPE-lined beverage cups were exposed to water at 100 degrees Celsius (212 degrees Fahrenheit) for 20 minutes.


To analyze the nanoparticles released from these plastic products, the researchers first needed to determine how to detect them. ¡°Imagine having a cup of water in a generic to-go coffee cup. It could have many billions of particles, and we would need to figure out how to find these nanoplastics. It¡¯s like finding a needle in a haystack,¡± Zangmeister said. 


So, he and his colleagues had to use a new approach. ¡°We used a way of taking the water that¡¯s in the cup, spraying it out into a fine mist, and drying the mist and all that¡¯s left within the solution,¡± said Zangmeister. Through this process, the nanoparticles are isolated from the rest of the solution.


The technique itself has previously been used to detect tiny particles in the atmosphere. ¡°So, we¡¯re not reinventing the wheel but applying it to a new area,¡± said Zangmeister.


After the mist was dried, the nanoparticles in it were sorted by their size and charge. Researchers could then specify a particular size, for example nanoparticles around 100 nanometers, and pass them into a particle counter. The nanoparticles were exposed to a hot vapor of butanol, a type of alcohol, then cooled down rapidly. As the alcohol condensed, the particles swelled from the size of nanometers to micrometers, making them much more detectable. This process is automated and run by a computer program, which counts the particles. 


Researchers could also identify the chemical composition of the nanoparticles by placing them on a surface and observing them with techniques known as scanning electron microscopy, which takes high-resolution images of a sample using a beam of high-energy electrons, and Fourier-transform infrared spectroscopy, a technique that captures the infrared-light spectrum of a gas, solid or liquid. 


All these techniques used together provided a fuller picture of the size and composition of the nanoparticles.


In their analysis and observations, the researchers found that the average size of the nanoparticles was between 30 nanometers and 80 nanometers, with few above 200 nanometers. Additionally, the concentration of nanoparticles released into hot water from food-grade nylon was seven times higher compared with the single-use beverage cups.


¡°In the last decade scientists have found plastics wherever we looked in the environment. People have looked at snow in Antarctica, the bottom of glacial lakes, and found microplastics bigger than about 100 nanometers, meaning they were likely not small enough to enter a cell and cause physical problems,¡± said Zangmeister. 


¡°Our study is different because these nanoparticles are really small and a big deal because they could get inside of a cell, possibly disrupting its function,¡± said Zangmeister, who also stressed that no one has determined that would be the case. 


The U.S Food and Drug Administration (FDA) regulates the plastics that touch the food we eat or the water we drink. The agency has standards and safety measures in place to determine what¡¯s safe. The FDA¡¯s researchers run rigorous tests on these plastics and measure how much plastic mass is lost when exposed to hot water. For example, the FDA has determined that food grade nylon (such as that used in tea bags) can safely lose up to 1% of its mass under high-temperature conditions. In the NIST study using their new technique, the researchers found one tenth of a percent of the mass was lost, which is significantly below current FDA limits for what¡¯s considered safe.


Zangmeister noted there isn¡¯t a commonly used test for measuring LDPE that is released into water from samples like coffee cups, but there are tests for nylon plastics. The findings from this study could help in efforts to develop such tests. In the meantime, Zangmeister and his team have analyzed additional consumer products and materials, such as fabrics, cotton polyester, plastic bags and water stored in plastic pipes. 


The findings from this study, combined with those from the other types of materials analyzed, will open new avenues of research in this area going forward. ¡°Most of the studies on this topic are written toward educating fellow scientists. This paper will do both: educate scientists and perform public outreach,¡± said Zangmeister.


Paper: Christopher Zangmeister, James Radney, Kurt Benkstein and Berc Kalanyan. Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environmental Science and Technology. Published online April 20, 2022. DOI: 10.1021/acs.est.1c06768


[Ãâó = ¹Ì±¹±¹¸³Ç¥Áرâ¼ú¿ø(https://www.nist.gov/news-events/news/2022/04/nist-study-shows-everyday-plastic-products-release-trillions-microscopic) / 2022³â 4¿ù 20ÀÏ]

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [½Ì°¡Æ÷¸£] ±¹Á¦¹°Çùȸ, ½Ì°¡Æ÷¸£¹°Çùȸ¿Í ½Ì°¡Æ÷¸£ ÀþÀº ¹° Àü¹®°¡ ¾ç¼º MOU ü°á
´ÙÀ½±Û [Çѱ¹] ÀÓÆÑÆ®ºÏ, ¡®2022 ¹° »ê¾÷ ½ÇÅÂ¿Í »ç¾÷Àü¸Á¡¯ º¸°í¼­ ¹ß°£
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.