Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ȯ°æ»ê¾÷ > ÃֽŴº½º
[2014] [½ºÀ§½º] ž籤 ¹°ºÐÇØ ÀåÄ¡¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÎ Ã˸Å
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.01.13 Á¶È¸¼ö 159
ÆÄÀÏ÷ºÎ
[½ºÀ§½º] ž籤 ¹°ºÐÇØ ÀåÄ¡¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÎ Ã˸Å
 
 
½ºÀ§½º ¿¬±¸ÁøÀº ž籤 ¹°ºÐÇØ ÀåÄ¡¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÌ°í Çâ»óµÈ Ã˸Ÿ¦ °³¹ßÇß´Ù.

ÅÂ¾ç ¿¡³ÊÁö´Â Àü ¼¼°è¿¡¼­ Á¡Á¡ ´õ ´Ã¾î³ª°í ÀÖ´Â ¿¡³ÊÁö ¼Ò¸ð¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â °ÅÀÇ À¯ÀÏÇÑ Àç»ý °¡´ÉÇÑ ¿¡³ÊÁö¿øÀÌ´Ù.
 
±×·¯³ª ž籤ÀÌ ¾øÀ» ¶§¿¡µµ Áö¼ÓÀûÀÎ ¿¡³ÊÁö °ø±ÞÀ» ÇÒ ¼ö ÀÖµµ·Ï ÅÂ¾ç ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀÎ ¹æ¹ýÀÌ ÇÊ¿äÇÏ´Ù.
 
ÀÌ°ÍÀ» ´Þ¼ºÇϱâ À§ÇÑ °¡Àå È¿°úÀûÀÎ ¹æ¹ý Áß Çϳª´Â ¹°À» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐ¸®Çϴµ¥ ÅÂ¾ç ¿¡³ÊÁö¸¦ »ç¿ëÇÏ´Â °ÍÀÌ´Ù.
 
ÀÌ ¼ö¼Ò´Â ¿¬·á ÀüÁö¸¦ ÀÛµ¿Çϴµ¥ »ç¿ëµÇ°í ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼öÁýÇÒ ¼ö ¾øÀ» ¶§¿¡µµ ¿¡³ÊÁö¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô µÈ´Ù.

±×·¯³ª ´ë±Ô¸ð ¹× Áö¼Ó °¡´ÉÇÏ°Ô ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼öÁýÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ Å¾çÀüÁöµéÀÌ Àú·ÅÇÏ°í dzºÎÇÑ Àç·á·Î ±¸¼ºµÇ¾î¾ß ÇÏ°í 10%ÀÇ ¼ö¼Ò Àüȯ È¿À²À» °¡Áö°í ÀÖ¾î¾ß ÇÑ´Ù.
 
ÀÌ ¿¬±¸°á°ú´Â Àú³Î Nature Communications¿¡ °ÔÀçµÇ¾ú°í, À̹ø ¿¬±¸ÆÀÀº Àú·ÅÇÑ Àç·á¸¦ »ç¿ëÇؼ­ °íÈ¿À²ÀÇ È®Àå °¡´ÉÇÑ Å¾籤 ¹° ºÐÇØ ÀåÄ¡¸¦ ¸¸µé ¼ö ÀÖ´Â ¹æ¹ýÀ» ¹ß°ßÇß´Ù.

ž籤 ½Ã½ºÅÛÀÌ ½ÅÀç»ý ¿¡³ÊÁö Áß¿¡¼­µµ ÃÖ¼±ÀÇ ¹æ¹ý Áß ÇϳªÀÌÁö¸¸, ž籤ÀÌ ½Ã°£°ú À§Ä¡¿¡ µû¶ó¼­ ´Þ¶óÁö±â ¶§¹®¿¡, ÅÂ¾ç ½Ã½ºÅÛÀº ÃæºÐÇÑ ¿¡³ÊÁö¸¦ Áö¼ÓÀûÀ¸·Î »ý¼º½Ãų ¼ö ¾ø´Ù.
 
ÀÌ·± ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀº ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼ö¼ÒÀÇ ÇüÅ·ΠÀúÀåÇÏ´Â ÀåÄ¡¸¦ ¸¸µå´Â °ÍÀε¥, ÀÌ°ÍÀº ¸Å¿ì ÀûÀº ¿À¿°¹°ÁúÀ» °¡Áö¸é¼­ Áö¼ÓÀûÀÎ Ãâ·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ´Ù.

¼ö¼Ò¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ´Â °¡Àå Áö¼Ó °¡´ÉÇÑ ¹æ¹ý Áß Çϳª´Â ±¤Àü±âÈ­ÇÐÀû ¹° ºÐÇØ(photoelectrochemical water-splitting)ÀÌ´Ù. ÅÂ¾ç ¿¡³ÊÁö´Â ¡°¼ö¼Ò ¹ß»ý ¹ÝÀÀ¡±À̶ó°í ºÒ¸®´Â ÇÁ·Î¼¼½º¸¦ ÅëÇؼ­ ¹° ºÐÀÚµéÀ» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐ¸®ÇÒ ¼ö ÀÖ´Ù.
 
ÀÌ·± ¹ÝÀÀÀº Ã˸Ÿ¦ ÇÊ¿ä·Î Çϴµ¥, ÀÌ°ÍÀº ÀÌ°ÍÀÇ ¹ÝÀÀ ¼Óµµ¸¦ Áõ°¡½ÃÅ°´Â È­ÇÐ ÀÛ¿ëÁ¦ÀÌ´Ù. ±¤Àü±âÈ­ÇÐÀû ¹° ºÐ¸® ÀåÄ¡¿¡¼­, ¹°À» ºÐ¸®Çϴµ¥ »ç¿ëµÇ´Â ÀϹÝÀûÀÎ Ã˸Ŵ ¹é±ÝÀε¥, ÀÌ°ÍÀº žç ÆгÎÀÇ ±¤À½±Ø Ç¥¸é À§¿¡ ÁõÂøµÈ´Ù. žç ÆгÎÀÇ Àü±ØÀº ±¤À» Àü·ù·Î Àüȯ½ÃÅ°´Âµ¥ »ç¿ëµÉ ¼ö ÀÖ´Ù.

À̹ø ¿¬±¸ÆÀÀº dzºÎÇÏ°í Àú·ÅÇÑ Àç·á¸¦ »ç¿ëÇؼ­ ÅÂ¾ç ¿¡³ÊÁö¸¦ µ¿·ÂÀ¸·Î ¾²´Â È¿°úÀûÀÎ ¹° ºÐÇØ ÀåÄ¡¸¦ ¸¸µé ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀ» ¹ß°ßÇß´Ù.
 
À̹ø ¿¬±¸ÁøÀº ¼ö¼Ò ¹ß»ý ¹ÝÀÀÀ» À§ÇÑ ¸ô¸®ºêµ§-Ȳȭ¹° Ã˸Ÿ¦ °³¹ßÇß°í, ±¤À½±ØÀ¸·Î¼­ ±¸¸®(I) »êÈ­¹°À» ÀÌ¿ëÇß´Ù. À̹ø ¿¬±¸ÁøÀº ¼Õ½±°Ô ´ë·® »ý»êÀÌ °¡´ÉÇÑ °£´ÜÇÑ ÁõÂø ÇÁ·Î¼¼½º¸¦ ÅëÇؼ­ ¸ô¸®ºêµ§ Ȳȭ¹°ÀÌ ±¸¸®(I) »êÈ­¹° ±¤À½±Ø À§¿¡ ÁõÂøµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù.

ÀÌ ¹æ¹ýÀº ¹é±Ý°ú °°Àº ´Ù¸¥ ¼ö¼Ò ¹ß»ý ¹ÝÀÀ ÃË¸Å¿Í À¯»çÇÑ È¿À²À» °¡Á³´Ù. À̹ø ¿¬±¸ÁøÀÌ °³¹ßÇÑ ¸ô¸®ºêµ§-Ȳȭ¹° Ã˸Ŵ ±¤ ¼öÁý Ç¥¸éÀÌ ±¤ÇÐÀû Åõ°ú¼ºÀ» °¡Áö°Ô ÇÑ´Ù.
 
¶ÇÇÑ ÀÌ°ÍÀº »ê¼º Á¶°Ç ÇÏ¿¡¼­ Çâ»óµÈ ¾ÈÁ¤¼ºÀ» °¡Áø´Ù. ±×·¯³ª ´õ Áß¿äÇÑ °ÍÀº ÃË¸Å¿Í ±¤À½±ØÀÌ ±¤Àü±âÈ­ÇÐÀû ¹° ºÐÇØ ÀåÄ¡ÀÇ ºñ¿ëÀ» ¸Å¿ì °¨¼Ò½ÃÅ°´Â Àú·ÅÇÏ°í dzºÎÇÑ Àç·á·Î ¸¸µé¾îÁú ¼ö ÀÖ´Ù´Â Á¡ÀÌ´Ù.
 
À̹ø ¿¬±¸Áø¿¡ µû¸£¸é, ÀÌ ¿¬±¸´Â ž籤À» ÀÌ¿ëÇÑ ¼ö¼Ò »ý¼º ÀåÄ¡¸¦ Á¦Á¶Çϴµ¥ »õ·Î¿î ±æÀ» ¿­¾îÁÙ °ÍÀÌ´Ù. ÀÌ ¿¬±¸°á°ú´Â Àú³Î Nature Communications¿¡ ¡°Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst¡±¶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù.

[Ãâó : KISTI ¹Ì¸®¾È(http://mirian.kisti.re.kr) ¡º±Û·Î¹úµ¿Çâºê¸®ÇÎ(GTB)¡»2014. 01. 13]
[¿ø¹®º¸±â]
 
 
An improved, cost-effective catalyst for water-splitting devices
 
By replacing platinum with molybdenum in photoelectrochemical cells, scientists from two EPFL labs have developed a cheaper and scalable technique that can greatly improve hydrogen production through water splitting as a means of storing solar energy.
 
Solar energy appears to be the only form of renewable that can be exploited at level that matches the world's growing needs.
 
However, it is equally necessary to find efficient ways to store solar energy in order to ensure a consistent energy supply when sunlight is scarce.
 
One of the most efficient ways to achieve this is to use solar energy to split water into hydrogen and oxygen, and get the energy back by consuming hydrogen in a fuel cell.
 
But collecting solar energy on a large and sustainable scale means that such cells must be made from materials that are cheap, abundant, and have 10% solar‐to‐hydrogen conversion efficiency.
 
Publishing in Nature Communications, an EPFL-led team of scientists has found a method to create a high-efficiency, scalable solar water splitting device using cheap materials.
 
Although one of the best means of sourcing renewable energy, solar systems cannot consistently produce adequate energy since varies from time to time and place to place.
 
A solution to this problem is a device that can store energy in the form of hydrogen for later use, offering a consistent output over time with very little pollution.
 
One of the most sustainable methods of producing hydrogen is photoelectrochemical (PEC) . Solar energy is used to break water molecules into hydrogen and through a process called "hydrogen evolution reaction".
 
This reaction requires a catalyst, which is a chemical agent that increases its speed. In PEC water-splitting devices, a common catalyst used to split water is platinum, which is deposited on the surface of the solar panel's photocathode – the solar panel's electrode that converts light into electric current.
 
A research team at EPFL has now found a way to make efficient solar-powered water splitting devices using abundant and cheap materials.
 
The group of Xile Hu developed a molybdenum-sulfide catalyst for the hydrogen evolution reaction, and the group of Michael Grätzel developed copper(I) oxide as a photocathode.
 
The researchers found that the molybdenum sulfide can be deposited on the copper(I) oxide photocathode for use in PEC water splitting through a simple deposition process that can be easily expanded onto a large scale.
 
The technique shows comparable efficiency to other hydrogen evolution reaction catalysts like platinum, it preserves the optical transparency for the light-harvesting surface and it shows improved stability under acidic conditions, which could translate into lower maintenance.
 
But more importantly, both the catalyst and the photocathode are made with cheap, earth-abundant materials that could greatly reduce the cost of PEC water-splitting devices in the future. According to senior author Xile Hu, the work represents a state-of-the-art example for solar hydrogen production devices.
 
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀδÏ] ºÏ¼ö¸¶Æ®¶óÁÖ Àü±âºÎÁ·À¸·Î °øÀå °¡µ¿ Áß´Ü
´ÙÀ½±Û [¸ß½ÃÄÚ] Àü·Â°ø»ç(CFE), 10,000km °¡½º ÆÄÀÌÇÁ¶óÀÎ °Ç¼³ÃßÁø
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.