Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ȯ°æ»ê¾÷ > ÃֽŴº½º
[¿µ±¹] ž翭 ¿¡³ÊÁö »ý»ê¹°Áú âÁ¶±â¼ú °³¹ß
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.04.16 Á¶È¸¼ö 167
ÆÄÀÏ÷ºÎ

[¿µ±¹] Å¾翭 ¿¡³ÊÁö »ý»ê¹°Áú âÁ¶±â¼ú °³¹ß

ž翭 ¿¡³ÊÁö ºÐ¾ßÀÇ ÃÖ±Ù ¹ßÀü¿¡¼­, ¿¬±¸ÁøµéÀº Àü·Â ¼Ò½º·Î¼­»Ó ¾Æ´Ï¶ó ÀÌ°ÍÀ» °¡´ÉÄÉ Çϴ ž翭 ¿¡³ÊÁö ¹°ÁúÀ» Á÷Á¢ »ý»êÇϱâ À§ÇØ Å¾çÀ» ÀÌ¿ëÇÏ´Â ¹æ¹ýÀ» °³¹ßÇß´Ù. ¿À¸®°Ç ÁÖ¸³´ëÇб³(Oregon State University) È­ÇÐ ¿£Áö´Ï¾îµéÀÌ ÀÌ·ç¾î³½ ÀÌ ±â¼úÇõ½ÅÀº °ð ž翭 ¿¡³ÊÁö ºñ¿ëÀ» ÁÙÀÌ°í »ý»ê ÇÁ·Î¼¼½ºÀÇ ¼Óµµ¸¦ ³ôÀ̸ç ģȯ°æÀûÀÎ ¹°ÁúÀ» »ç¿ëÇÏ¿©, žçÀ» ž翭 ÀåÄ¡¿ë ¹°Áú»Ó ¾Æ´Ï¶ó ±×°Íµé¿¡ Àü¿øÀ» °ø±ÞÇÏ´Â ¿¬¼ÓÀûÀÎ ¿¡³ÊÁö¸¦ »ý»êÇÏ´Â °ÅÀÇ ¿ø½ºÅé ¼óÀ¸·Î ¸¸µé°Ô µÉ °ÍÀÌ´Ù. 

ÀÌ ¿¬±¸°á°ú´Â ¿µ±¹ ¿Õ¸³ È­ÇÐȸ(Royal Society of Chemistry) Àú³ÎÀÎ [RSC Advances]¿¡ ¹ßÇ¥µÇ¾ú°í, ±¹¸³°úÇбâ±Ý(National Science Foundation)ÀÇ Áö¿øÀ» ¹Þ¾Ò´Ù. 

"ÀÌ Á¢±Ù¹ýÀº È¿°ú°¡ ÀÖÀ» °ÍÀÌ¸ç ¸Å¿ì ģȯ°æÀûÀÌ´Ù. ÀÌ ½Ã½ºÅÛÀÇ ÀϺΠÃø¸éµéÀº ž翭 ¿¡³ÊÁö ºñ¿ëÀÇ Àý°¨À» °è¼Ó À¯µµÇÒ °ÍÀÌ¸ç ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ¸é ź¼Ò¹ßÀÚ±¹µµ ÁÙÀÌ°Ô µÉ °ÍÀÌ´Ù. ÀÌ ±â¼úÀº ÅÂ¾ç ¼Ò½º°¡ ÀûÀýÇÏ°Ô ÀÖ´Â °÷Àº ¾îµð¿¡¼­µçÁö ž翭 ¿¡³ÊÁö ¹°ÁúÀ» »ý»êÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ È­ÇÏ Á¦Á¶ ÇÁ·Î¼¼½º´Â Á¦·Î ¿¡³ÊÁö Ư¼ºÀ» °¡Áø´Ù"°í ÀÌ ´ëÇб³ È­ÇаøÇаú ±³¼öÀÌÀÚ ÀÌ ¿¬±¸ÀÇ ¼±ÀÓ ÀúÀÚÀÎ Ä¡-ÈË Ã¢(Chih-Hung Chang) ±³¼ö´Â ¸»Çß´Ù. 

ÀÌ ¿¬±¸°á°ú´Â ÇÁ¸°ÆÃÀ¸·Î žçÀüÁö¸¦ ¸¸µå´Â ³ª³ëÀÔÀÚ À×Å©¸¦ »ý»êÇϱâ À§ÇØ ¿¬¼Ó Ç÷οìÀÇ ¸¶ÀÌÅ©·Î¸®¾×Å͸¦ »ç¿ëÇÏ´Â °Í¿¡ ±â¹ÝÀ» µÎ°í ÀÖ´Ù. ´ëºÎºÐ ÀÏȸºÐ Á¢±Ù¹ý(batch operations)¿¡ ±â¹ÝÀ» µÐ ±âÁ¸ÀÇ Á¢±Ù¹ýÀÇ °æ¿ì, ½Ã°£ÀÌ ¸¹ÀÌ ¼ÒºñµÇ°í ºñ¿ëÀÌ ¸¹ÀÌ µç´Ù. 

ÀÌ ÇÁ·Î¼¼½º¿¡¼­, ½Ã¹Ä·¹ÀÌ¼ÇµÈ Å¾籤¼±Àº ½Å¼ÓÇÑ °¡¿­À» À§ÇØ Å¾翭 ¸¶ÀÌÅ©·Î¸®¾×ÅÍ¿¡ ÃÊÁ¡À» ¸ÂÃ߸鼭µµ, ÃÖÁ¾ Á¦Ç°ÀÇ Ç°Áú Çâ»óÀ» À§ÇØ Á¤¹ÐÇÑ ¿Âµµ Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÑ´Ù. ÀÌ ½ÇÇè¿¡¼­ÀÇ ºûÀº ÀΰøÀûÀ¸·Î »ý¼ºµÇ¾úÁö¸¸, ÇÁ·Î¼¼½º´Â Á÷»ç±¤¼±À¸·Î °¡´ÉÇÏ¿© ÇöÀç »ç¿ëµÇ°í ÀÖ´Â Á¢±Ù¹ý ºñ¿ëÀÇ ÀϺο¡ ºÒ°úÇÏ´Ù. 

"¿ì¸®°¡ °³¹ßÇÑ ½Ã½ºÅÛÀº 30ºÐ¿¡¼­ 2½Ã°£ Á¤µµ ¼Ò¿äµÇ´Â ´Ù¸¥ ¹æ¹ý°ú ºñ±³ÇÏ¿© ¸î ºÐ À̳»¿¡ ž翭 ¿¡³ÊÁö ¹°ÁúÀ» ÇÕ¼º½Ãų ¼ö ÀÖ´Ù. ÀÛµ¿ ¼Óµµ Ãø¸é¿¡¼­ÀÇ ÀÌ È¿°ú´Â ºñ¿ëÀ» ³·Ãâ ¼ö ÀÖ´Ù"°í â(Chang) ±³¼ö´Â ¸»Çß´Ù. 

ÀÌ ½ÇÇè¿¡¼­, ž翭 ¹°ÁúÀº ±¸¸® Àε㠵𼿷¹´Ïµå(copper indium diselenide)·Î Á¦À۵ǾúÁö¸¸, Àç·áºñ¿ëÀ» ³·Ãß±â À§ÇØ ±¸¸®-¾Æ¿¬-ÁÖ¼®-Ȳ°ú °°Àº È­ÇÕ¹°À» »ç¿ëÇÏ´Â °Íµµ °¡´ÉÇÒ °ÍÀ̶ó°í ±×´Â ¹àÇû´Ù. ±×¸®°í ÇÏ·ç 24½Ã°£ ÀÛµ¿µÉ ¼ö ÀÖ´Â ÇÁ·Î¼¼½º¸¦ âÁ¶Çϱâ À§ÇØ Å¾籤¼±Àº óÀ½¿¡´Â ³ìÀº ¼Ò±ÝÀ» âÁ¶Çϴµ¥ »ç¿ëµÉ ¼ö ÀÖÀ¸¸ç, ÀÌ°ÍÀº ³ªÁß¿¡ Á¦ÀÛÀ» À§ÇÑ ¿¡³ÊÁö ¼Ò½º·Î¼­ »ç¿ëµÉ °ÍÀÌ´Ù. ÀÌ°ÍÀº ž翭 ¿¡³ÊÁö ¹°ÁúÀ» âÁ¶Çϴµ¥ ÇÊ¿äÇÑ ÇÁ·Î¼¼½Ì ¿Âµµ¿¡ ´ëÇÑ ´õ¿í Á¤¹ÐÇÑ Á¦¾î¸¦ °¡´ÉÄÉ ÇÒ °ÍÀÌ´Ù. 

ÃÖ½ÅÀÇ Ä®ÄÚ°Õ(chalcogenide)¿¡ ±â¹ÝÀ» µÐ ¹Ú¸·Çʸ§ žçÀüÁö´Â ÀÌ¹Ì ½ÇÇè½Ç¿¡¼­ ¾à 20%¿¡ ´ÞÇÏ´Â »ó´çÈ÷ ³ôÀº ¼öÁØÀÇ Å¾翭 ¿¡³ÊÁö º¯È¯È¿À²¼ºÀ» ´Þ¼ºÇßÀ¸¸ç ºñ¿ëÀº ½Ç¸®ÄÜ¿¡ ±â¹ÝÀ» µÐ ±â¼úº¸´Ù Àú·ÅÇÏ´Ù°í ¿¬±¸ÁøÀº ¹àÇû´Ù. È¿À²¼º ºÐ¾ß¿¡¼­ÀÇ Ãß°¡ÀûÀÎ °³¼±ÀÌ °¡´ÉÇÒ °ÍÀ̶ó°í ±×µéÀº ¹àÇû´Ù. 

ÀÌ·¯ÇÑ Å¾翭 ¿¡³ÊÁö¿¡ ´ëÇÑ ¹Ú¸·Çʸ§ Á¢±Ù¹ýÀÇ ¶Ç ´Ù¸¥ ÀåÁ¡Àº, ±âÁ¸ÀÇ ½Ç¸®ÄÜ Å¾çÀüÁö ÃþÀÌ °¡Áø 50~100¹ÌÅ©·Ð µÎ²²º¸´Ù ÀÛÀº 1~2¹ÌÅ©·Ð Á¤µµÀÇ Å¾翭 Èí¼ö ÃþÀ» °¡Áø´Ù´Â »ç½ÇÀÌ´Ù. ÀÌ°ÍÀº â¹®À̳ª ÁöºØ³Î ¶Ç´Â ´Ù¸¥ ºÎºÐ¿¡ ¹Ú¸·Çʸ§À» ÄÚÆÃÇÔÀ¸·Î½á, ž翭 ¿¡³ÊÁö¸¦ ±¸Á¶Ã¼¿¡ ÅëÇÕ½ÃÅ°±â ½±°Ô ÇÒ °ÍÀÌ´Ù. 

ÀÌ ¿¬±¸ ÀÛ¾÷¿¡ ´ëÇÑ Ãß°¡ÀûÀÎ Áö¿øÀº ¿À¸®°Ç ÁÖ¸³´ëÇб³ ³ª³ë»çÀ̾𽺠¹× ¸¶ÀÌÅ©·ÎÅ×Å©³î·ÎÁö ¿¬±¸¼Ò(ONAMI, Oregon Nanoscience and Microtechnologies Institute), ¿À¸®°Ç ±âÁ¸ ȯ°æ ¹× Áö¼Ó°¡´ÉÇÑ ±â¼ú¼¾ÅÍ(BEST, Built Environment and Sustainable Technologies Center)¿¡ ÀÇÇØ Á¦°øµÇ¾ú´Ù. 

[Ãâó: KISTI ¹Ì¸®¾È¡º³ì»ö±â¼úÁ¤º¸Æ÷ÅС»/ 2014³â 4¿ù 16ÀÏ]


[¿ø¹®º¸±â]


Energy breakthrough uses sun to create solar energy materials

In a recent advance in solar energy, researchers have discovered a way to tap the sun not only as a source of power, but also to directly produce the solar energy materials that make this possible. This breakthrough by chemical engineers at Oregon State University could soon reduce the cost of solar energy, speed production processes, use environmentally benign materials, and make the sun almost a "one-stop shop" that produces both the materials for solar devices and the eternal energy to power them.   

The findings were just published in RSC Advances, a journal of the Royal Society of Chemistry, in work supported by the National Science Foundation.   "This approach should work and is very environmentally conscious," said Chih-Hung Chang, a professor of chemical engineering at Oregon State University, and lead author on the study. "Several aspects of this system should continue to reduce the cost of solar energy, and when widely used, our carbon footprint," Chang said. "It could produce solar energy materials anywhere there's an adequate solar resource, and in this chemical manufacturing process, there would be zero energy impact.

" The work is based on the use of a "continuous flow" microreactor to produce nanoparticle inks that make solar cells by printing. Existing approaches based mostly on batch operations are more time-consuming and costly.   In this process, simulated sunlight is focused on the solar microreactor to rapidly heat it, while allowing precise control of temperature to aid the quality of the finished product. 

The light in these experiments was produced artificially, but the process could be done with direct sunlight, and at a fraction of the cost of current approaches.   "Our system can synthesize solar energy materials in minutes compared to other processes that might take 30 minutes to two hours," 

Chang said. "This gain in operation speed can lower cost."   In these experiments, the solar materials were made with copper indium diselenide, but to lower material costs it might also be possible to use a compound such as copper zinc tin sulfide, Chang said. And to make the process something that could work 24 hours a day, sunlight might initially be used to create molten salts that could later be used as an energy source for the manufacturing. This could provide more precise control of the processing temperature needed to create the solar energy materials.   

State-of-the-art chalcogenide-based, thin film solar cells have already reached a fairly high solar energy conversion efficiency of about 20 percent in the laboratory, researchers said, while costing less than silicon technology. Further improvements in efficiency should be possible, they said.  

Another advantage of these thin-film approaches to solar energy is that the solar absorbing layers are, in fact, very thin - about 1-2 microns, instead of the 50-100 microns of more conventional silicon cells. This could ease the incorporation of solar energy into structures, by coating thin films onto windows, roof shingles or other possibilities.   

Additional support for this work was provided by the Oregon Nanoscience and Microtechnologies Institute, or ONAMI, and the Oregon Built Environment and Sustainable Technologies Center, or Oregon BEST.

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [Áß±¹] ÇâÈÄ Áß±¹ÀÇ ¼®Åº ¿¡³ÊÁö »ê¾÷ ¹ßÀü Ãß¼¼, ½ÃÀå ÁÖµµÀÇ ¼®Åº-Àü·Â ÅëÇÕ
´ÙÀ½±Û [ÀϺ»] ÇØ»ó dz·Â 18±âÀÇ °Ç¼³ ÇÁ·ÎÁ§Æ® °³½Ã
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.