Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ȯ°æ»ê¾÷ > ÃֽŴº½º
[½ºÀ§½º] ÅÂ¾ç ¿¡³ÊÁö¸¦ ´õ Àú·ÅÇÏ°Ô ÀúÀåÇÒ ¼ö ÀÖ°Ô ÇÏ´Â ÀÚ±â Á¶¸³µÈ 2Â÷¿ø Àç·á
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.07.06 Á¶È¸¼ö 203
ÆÄÀÏ÷ºÎ
[½ºÀ§½º] ÅÂ¾ç ¿¡³ÊÁö¸¦ ´õ Àú·ÅÇÏ°Ô ÀúÀåÇÒ ¼ö ÀÖ°Ô ÇÏ´Â ÀÚ±â Á¶¸³µÈ 2Â÷¿ø Àç·á
 
ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼ö¼Ò ¿¬·á·Î ÀúÀåÇÏ´Â ¹æ¹ýÀº Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛÀ» ¹ßÀü½Ãų ¼ö ÀÖ´Â À¯¸ÁÇÑ ¼ö´ÜÀÌ´Ù. ÀÌ°ÍÀ» ´Þ¼ºÇϱâ À§Çؼ­, ±âÁ¸ÀÇ Å¾çÀüÁö ÆгÎÀº ¹° ºÐÀÚ¸¦ »ê¼Ò¿Í ¼ö¼Ò·Î ºÐ¸®Çϴµ¥ Àü·ù¸¦ »ç¿ëÇÑ´Ù. ¼ö¼Ò´Â ÅÂ¾ç ¿¬·á·Î °í·ÁµÇ°í ÀÖÁö¸¸, ¹° ºÐ¸® ±â¼úµéÀ» »ó¿ëÈ­ÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀΠžçÀüÁö ÆгÎÀ» ¸¸µå´Âµ¥ ³Ê¹«³ª ¸¹Àº ºñ¿ëÀÌ µç´Ù. EPFLÀÇ ¿¬±¸ÁøÀº ÅÂ¾ç ¿¡³ÊÁö·Î Àú·ÅÇÏ°Ô ¼ö¼Ò¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ´Â °íÇ°Áú žçÀüÁö ÆгÎÀ» Á¦Á¶ÇÏ´Â °£´ÜÇÑ ¹æ¹ýÀ» °³¹ßÇß´Ù. ÀÌ ¿¬±¸°á°ú´Â Àú³Î Nature Communications¿¡ °ÔÀçµÇ¾ú´Ù.

¸¹Àº »óÀÌÇÑ Àç·áµéÀÌ ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼ö¼Ò·Î ÀüȯÇÏ´Â ±â¼ú¿¡ »ç¿ëµÇ·Á°í °í·ÁµÇ¾úÁö¸¸, ±×Áß¿¡¼­ 2Â÷¿ø Àç·áµéÀÌ À¯¸ÁÇÑ Èĺ¸ÀÚ¶ó´Â °ÍÀ» ÃÖ±Ù¿¡ È®ÀÎÇß´Ù. ÀϹÝÀûÀÎ Àç·áµé Áß¿¡¼­, ±×·¡ÇÉÀº µ¶Æ¯ÇÑ Àü±âÀû Ư¼ºµéÀ» °¡Áø´Ù. ±×·¯³ª »ç¿ë °¡´ÉÇÑ Á¤µµÀÇ ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼öÈ®Çϱâ À§Çؼ­´Â Å« ¸éÀûÀÇ Å¾ç ÆгÎÀ» ÇÊ¿ä·Î ÇÏÁö¸¸, 2Â÷¿ø Àç·á·Î ¹Ú¸·À» Á¦Á¶ÇÏ´Â °ÍÀº ¾î·Á¿ï »Ó¸¸ ¾Æ´Ï¶ó ºñ¿ëÀÌ ¸¹ÀÌ µç´Ù.

À̹ø ¿¬±¸ÁøÀº µÎ °³ÀÇ ºñ-È¥ÇÕ¼º ¾×ü °£ÀÇ °è¸éÀ» »ç¿ëÇÏ´Â Çõ½ÅÀûÀ̸鼭 Àú·ÅÇÑ ¹æ¹ýÀ¸·Î ÀÌ ¹®Á¦¸¦ ÇØ°áÇß´Ù. À̹ø ¿¬±¸ÁøÀº ¡°ÅÖ½ºÅÙ µð¼¿·¹³ªÀ̵å(tungsten diselenide)¡± ¶ó°í ºÒ¸®´Â ÃÖ°íÀÇ 2Â÷¿ø Àç·áµé ÁßÀÇ Çϳª¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú´Ù. ÀÌÀü ¿¬±¸µéÀº ÀÌ Àç·á°¡ ³ôÀº ¾ÈÁ¤¼ºÀ» °¡Áö¸é¼­ ÅÂ¾ç ¿¡³ÊÁö¸¦ ¼ö¼Ò ¿¬·á·Î Á÷Á¢ Àüȯ½Ãų ¼ö ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇß´Ù. ÅÖ½ºÅÙ µð¼¿·¹³ªÀ̵å À§¿¡ ¹Ú¸·À» ¸¸µé±â Àü¿¡, À̹ø ¿¬±¸ÁøÀº Àç·áÀÇ ±ÕÀÏÇÑ ºÐ»êÀ» ´Þ¼ºÇØ¾ß Çß´Ù. ÀÌ°ÍÀ» ¼öÇàÇϱâ À§Çؼ­, À̹ø ¿¬±¸ÁøÀº ¾ÆÁÖ ¾ãÀº 2Â÷¿ø ¹ÚÆíÀ¸·Î ¹Ú¸®µÇµµ·Ï À½ÆÄ Áøµ¿À» »ç¿ëÇؼ­ ¾×ü ¿ë¸Å¿Í ÅÖ½ºÅÙ µð¼¿·¹³ªÀÌµå ºÐ¸»À» È¥ÇÕ½ÃÄ×´Ù. ±× ÈÄ¿¡ ÀÌ È¥ÇÕ¹°À» ¾ÈÁ¤½ÃÅ°±â À§Çؼ­ Ưº°ÇÑ È­Çй°ÁúÀ» ÷°¡Çß´Ù. À̹ø ¿¬±¸Áø¿¡ ÀÇÇؼ­ °³¹ßµÈ ÀÌ ±â¼úÀº À×Å© ¶Ç´Â ÆäÀÎÆ®¿Í À¯»çÇÏ°Ô ¹ÚÆí À§¿¡ ±ÕÀÏÇÑ ºÐ»êÀ» ½Ãų ¼ö ÀÖ´Ù.

À̹ø ¿¬±¸ÁøÀº °íÇ°Áú ¹Ú¸·À» »ý¼ºÇϱâ À§Çؼ­ »õ·Î¿î Çõ½ÅÀûÀÎ ¹æ¹ýÀ» »ç¿ëÇß´Ù: ±×µéÀº È¥ÇÕµÇÁö ¾Ê´Â µÎ °³ÀÇ ¾×ü °£ÀÇ °è¸é¿¡ ÅÖ½ºÅÙ µð¼¿·¹³ªÀ̵å À×Å©¸¦ ÁÖÀÔÇß´Ù. ÀÌ·± ¿ÀÀÏ-¹° È¿°ú¸¦ ÀÌ¿ëÇÔÀ¸·Î½á, ±×µéÀº ±ÕÀÏÇÑ °íÇ°Áú ¹Ú¸·À» Çü¼ºÇϵµ·Ï µÎ ¾×üÀÇ °è¸éÀ» »ç¿ëÇß´Ù. ÀÌ ¾×üµéÀº Á¶½É½º·´°Ô Á¦°ÅµÇ¾ú°í, ¹Ú¸·Àº Ç÷º¼­ºí Çöó½ºÆ½ ÁöÁöü·Î Àü»çµÇ¾ú´Ù. ÀÌ°ÍÀº ±âÁ¸ÀÇ ÆгΠÁ¦Á¶ °øÁ¤º¸´Ù ÈξÀ ´õ Àú·ÅÇÏ´Ù.

ÀÌ¿Í °°Àº ¹æ¹ýÀ¸·Î Á¦Á¶µÈ ¹Ú¸·Àº µ¿ÀÏÇÑ Àç·áÁö¸¸ ´Ù¸¥ ¹æ¹ýÀ¸·Î ¸¸µé¾îÁø ¹Ú¸·º¸´Ù ¿ì¼öÇÑ È¿À²À» °¡Áø´Ù´Â °ÍÀ» È®ÀÎÇß´Ù. ¾ÆÁ÷ °³³ä Áõ¸í ´Ü°èÀÌÁö¸¸, ÅÂ¾ç ¿¡³ÊÁöÀÇ ¼ö¼Ò ¿¬·á·ÎÀÇ Àüȯ È¿À²Àº ¾à 1%ÀÌ´Ù. ÀÌ°ÍÀº ´Ù¸¥ ¹æ¹ýÀ¸·Î Á¦Á¶µÈ ¹Ú¸·º¸´Ù ¸Å¿ì Çâ»óµÈ ¼öÄ¡ÀÌ´Ù. ¶ÇÇÑ ÇâÈÄ¿¡ ´õ ³ôÀº È¿À²À» ´Þ¼ºÇÒ ¼ö ÀÖ´Â »ó´çÇÑ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ´Ù.

´õ Áß¿äÇÑ °ÍÀº ÀÌ·± ¾×ü-¾×ü ¹æ¹ýÀÌ ½±°Ô È®ÀåµÉ ¼ö ÀÖ´Ù´Â Á¡ÀÌ´Ù. ¡°ÀÌ°ÍÀº ´ë¸éÀû ·Ñ-Åõ-·Ñ(roll-to-roll) 󸮿¡ ÀûÇÕÇÏ´Ù¡±°í Kevin Sivula°¡ ¸»Çß´Ù. ¡°ÀÌ Àç·áµéÀÇ ¾ÈÁ¤¼º°ú ÀûÃþ ¹æ¹ýÀÇ ¿ëÀ̼ºÀ» °í·ÁÇϸé, ÀÌ°ÍÀº ž翡³ÊÁöÀÇ ¼ö¼Ò ¿¬·á·ÎÀÇ °æÁ¦ÀûÀÎ Àüȯ¿¡¼­ Áß¿äÇÑ ÁøÀüÀÌ ÀÌ·ç¾îÁ³´Ù´Â °ÍÀ» º¸¿©Áش١±°í Sivula°¡ µ¡ºÙ¿´´Ù.  ÀÌ ¿¬±¸°á°ú´Â Àú³Î Nature Communications¿¡ ¡°Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production¡±À̶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù(doi:10.1038/ncomms8596).

±×¸². Ç÷º¼­ºí Sn:In2O3 (ITO)À¸·Î ÄÚÆÃµÈ PET Çöó½ºÆ½ À§¿¡ ÁõÂøµÈ ´ÜÀÏ ¹ÚÆí WSe2 ¹Ú¸·ÀÇ À̹ÌÁö.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 7¿ù 6ÀÏ]

[¿ø¹®º¸±â]

Self-assembled 2D materials for cheaper solar energy storage

Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems. To accomplish this, traditional solar panels can be used to generate an electrical current that splits water molecules into oxygen and hydrogen, the latter being considered a form of solar fuel.

However, the cost of producing efficient solar panels makes water-splitting technologies too expensive to commercialize. EPFL scientists have now developed a simple, unconventional method to fabricate high-quality, efficient solar panels for direct solar hydrogen production with low cost. The work is published in Nature Communications.

Many different materials have been considered for use in direct solar-to-hydrogen conversion technologies but "2-D materials" have recently been identified as promising candidates. In general these materials--which famously include graphene--have extraordinary electronic properties. However, harvesting usable amounts of solar energy requires large areas of solar panels, and it is notoriously difficult and expensive to fabricate thin films of 2-D materials at such a scale and maintain good performance. 

Kevin Sivula and colleagues at EPFL addressed this problem with an innovative and cheap method that uses the boundary between two non-mixing liquids. The researchers focused on one of the best 2-D materials for solar water splitting, called "tungsten diselenide". Past studies have shown that this material has a great efficiency for converting solar energy directly into hydrogen fuel while also being highly stable. 

Before making a thin film of it, the scientists first had to achieve an even dispersion of the material. To do this, they mixed the tungsten diselenide powder with a liquid solvent using sonic vibrations to "exfoliate" it into thin, 2-D flakes, and then added special chemicals to stabilize the mix. Developed by Sivula's lab (2014), this technique produces an even dispersion of the flakes that is similar to an ink or a paint. 

The researchers then used an out-of-the-box innovation to produce high-quality thin films: they injected the tungsten diselenide ink at the boundary between two liquids that do not mix. Exploiting this oil-and-water effect, they used the interface of the two liquids as a "rolling pin" that forced the 2-D flakes to form an even and high-quality thin film with minimal clumping and restacking. The liquids were then carefully removed and the thin film was transferred to a flexible plastic support, which is much less expensive than a traditional solar panel. 

The thin film produced like this was tested and found to be superior in efficiency to films made with the same material but using other comparable methods. At this proof-of-concept stage, the solar-to-hydrogen conversion efficiency was around 1%--already a vast improvement over thin films prepared by other methods, and with considerable potential for higher efficiencies in the future. 

More importantly, this liquid-liquid method can be scaled up on a commercial level. "It is suitable for rapid and large-area roll-to-roll processing," says Kevin Sivula. "Considering the stability of these materials and the comparative ease of our deposition method, this represents an important advance towards economical solar-to-fuel energy conversion." 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [Àεµ] 6¿ù 17ÀÏ Ã¶°­ ¼öÀÔ°ü¼¼ Àλó
´ÙÀ½±Û [¹Ì±¹] ¼ö¼Ò ÀÚµ¿Â÷¸¦ À§ÇÑ ÀúÀå ¹°Áú ¸¶±×³×½· ÇÏÀ̵å¶óÀ̵å
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.