Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ȯ°æ»ê¾÷ > ÃֽŴº½º
[°øÅë] »õ·Î¿î ±×·¡ÇÉ¡¤À°¹æÁ¤°è ÁúÈ­ºØ¼Ò ¸ÞŸ±¸Á¶
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.07.07 Á¶È¸¼ö 210
ÆÄÀÏ÷ºÎ
[°øÅë] »õ·Î¿î ±×·¡ÇÉ¡¤À°¹æÁ¤°è ÁúÈ­ºØ¼Ò ¸ÞŸ±¸Á¶
 
¹Ì±¹, ÀϺ», µ¶ÀÏ, ³×´ú¶õµå ¿¬±¸ÁøÀº À°¹æÁ¤°è ÁúÈ­ºØ¼Ò(hexagonal boron nitride, hBN) À§¿¡ ´ÜÀÏÃþ ±×·¡ÇÉÀ¸·Î ±¸¼ºµÈ ¹Ýµ¥¸£¹ß½º ÇìÅ׷α¸Á¶¿¡¼­ ÃÖÃÊ·Î ¡°½Ö°î¼± Æú¶ó¸®Åæ(hyperbolic polariton)¡±À» Á¦¾îÇϴµ¥ ¼º°øÇß´Ù. À̹ø ¿¬±¸ÁøÀº ±×·¡ÇÉ/hBN "¸ÞŸ±¸Á¶" ¼Ó¿¡ ÇÏÀ̺긮µå ½Ö°î¼± ÇöóÁî¸ó-Æ÷³í Æú¶ó¸®ÅæÀ» »ý¼ºÇϱâ À§Çؼ­ ±×·¡ÇÉ ¼ÓÀÇ Ç¥¸é ÇöóÁî¸ó Æú¶ó¸®Åæ°ú hBN ¼ÓÀÇ ½Ö°î¼± Æ÷³í Æú¶ó¸®ÅæÀ» È°¿ëÇß´Ù. ÀÌ ¿¬±¸´Â ÷´Ü Æ÷Åä´Ð½º ÀåÄ¡¸¦ °³¹ßÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÌ´Ù.

±×·¡ÇÉ, hBN, ÀÌȲȭ¸ô¸®ºêµ§(molybdenum disulphide)°ú °°Àº 2Â÷¿ø Ãþ»ó Àç·áµéÀº ¹Ýµ¥¸£¹ß½º ÈûÀ¸·Î ¼­·Î ¾àÇÏ°Ô °áÇÕµÈ ¿øÀÚ Æò¸éÀ¸·Î ¸¸µé¾îÁø´Ù. ±×µéÀº 3Â÷¿ø »ó´ë¹°¿¡ ºñÇؼ­ ¸Å¿ì µ¶Æ¯ÇÑ Àü±âÀû ¹× ±â°èÀû Ư¼ºµéÀ» °¡Áö´Âµ¥, ÀÌ°ÍÀº ±×µéÀÌ »õ·Î¿î ÀåÄ¡ ºÐ¾ß¿¡ À¯¿ëÇÏ°Ô Àû¿ëµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. hBNÀº ¶Ù¾î³­ ±â°èÀû ¹× ¿­Àû Ư¼ºÀ» °¡Áø´Ù. ½ÇÁ¦·Î, ±×·¡ÇÉ°ú hBNÀÌ ¸Å¿ì À¯»çÇÑ °ÝÀÚ »ó¼ö¸¦ °¡Áø´Ù´Â »ç½Ç ¶§¹®¿¡ ÀÌ Àç·á°¡ ±×·¡ÇÉÀ» À§ÇÑ ¿ì¼öÇÑ ±âÆÇÀ̶ó´Â °ÍÀÌ ÀÌ¹Ì Áõ¸íµÇ¾ú´Ù. ¶ÇÇÑ ÀÌ°ÍÀº ÀüÀڱ⠽ºÆåÆ®·³ÀÇ ±â¼úÀûÀ¸·Î Áß¿äÇÑ Àû¿Ü¼± ´ë¿ª¿¡¼­ °­ÇÑ Æ÷³í °ø¸íÀ» °¡Áø´Ù. ÀÌ°ÍÀº ±¤ÀüÀÚÀåÄ¡¿¡ Àû¿ëÇϴµ¥ ÀÌ»óÀûÀÌ´Ù.

hBNÀº Àç·á ¼ÓÀÇ À¯Àü »ó¼ö°¡ ±âÀú¸é(x-y) ¼Ó¿¡¼­ µ¿ÀÏÇÏÁö¸¸ Á¤»óÀûÀÎ ¸é(y)¿¡¼­ ¹Ý´ë ½ÅÈ£¸¦ °¡Áö±â ¶§¹®¿¡ ÀÚ¿¬ÀûÀ¸·Î ½Ö°î¼±À» °¡Áø´Ù. ÀÌ·± Ư¼º ¶§¹®¿¡, À̹ø ¿¬±¸ÁøÀº hBN ½½·¡ºê°¡ ½Ö°î¼± Æ÷³í Æú¶ó¸®ÅæÀÌ ÀüÆÄµÉ ¼ö ÀÖ´Â µµÆÄ°üÀ¸·Î¼­ È°¿ëµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» È®ÀÎÇß´Ù. Æ÷³íÀº ¾çÀÚÈ­µÈ À½ÆÄÀÌ°í, ÀϺΠ°úÇÐÀÚµéÀº ÀûÀýÇÑ ¸Åü°¡ ¹ß°ßµÇ¸é ±×µéÀÌ ³ª³ëÀåÄ¡ ¼ÓÀÇ Á¤º¸¸¦ Àü´ÞÇϴµ¥ »ç¿ëµÉ ¼ö ÀÖ´Ù°í ¹Ï°í ÀÖ´Ù. Æ÷³íÀº ·¹ÀÌÀú±¤À» »ç¿ëÇؼ­ ³ª³ëÅ©±â ±¸Á¶ ¼Ó¿¡ »ý¼ºµÉ ¼ö ÀÖ°í, »ý¼ºµÈ Æ÷³íÀÇ ÆÄÀåÀº ÀüÆĵǴ ³ª³ë±¸Á¶ÀÇ Áֱ⼺¿¡ ÀÇÁ¸ÇÑ´Ù. hBNÀÇ Ãþ µÎ²²´Â ±×·¡ÇÉ°ú °°ÀÌ ¿øÀÚ Å©±â·Î Á¦¾îµÉ ¼ö Àֱ⠶§¹®¿¡ ÀÌ Àç·á´Â ÀÌ·± Ãø¸é¿¡¼­ ƯÈ÷ Èï¹Ì·Ó´Ù.

À۳⿡, Ķ¸®Æ÷´Ï¾Æ ´ëÇÐÀÇ »÷µð¿¡ÀÌ°í Ä·ÆÛ½º(University of California, San Diego)ÀÇ Dmitri Basov°¡ À̲ô´Â ¿¬±¸ÁøÀº Æ÷³í Æú¶ó¸®Åæ ÆÄÀåÀÌ hBN ¼ÓÀÇ Ãþ ¼ö¸¦ º¯È­½ÃÅ´À¸·Î½á Ưº°ÇÑ ÆÄÀå°ú °­µµ¿¡¼­ º¯È¯µÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù. ±×·¯³ª µ¿¿ªÇÐÀû Ư¼ºµéÀÌ hBNÀÇ °áÁ¤ °ÝÀÚ ±¸Á¶¿¡ ´Þ·ÁÀֱ⠶§¹®¿¡ Æ÷³í Æú¶ó¸®ÅæÀ» Á¦¾îÇϱⰡ ¾î·Æ´Ù.

ÇöÀç, µ¿ÀÏÇÑ ¿¬±¸ÁøÀº hBN À§¿¡ ±×·¡ÇÉ ´ÜÀÏÃþÀ» ¹Ýµ¥¸£¹ß½º ÇìÅ׷α¸Á¶·Î ¸¸µêÀ¸·Î½á ÀÌ·± Æ÷³í Æú¶ó¸®ÅæÀ» Á¦¾îÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇß´Ù. ±×·¡ÇÉ ¼ÓÀÇ Ç¥¸é ÇöóÁî¸ó Æú¶ó¸®ÅæÀº ½Ö°î¼± ÇöóÁî¸ó-Æ÷³í Æú¶ó¸®ÅæÀ» °¡Áø ±×·¡ÇÉ/hBN ÇìÅ׷α¸Á¶¸¦ ¸¸µé±â À§Çؼ­ hBN ¼Ó¿¡ ½Ö°î¼± Æ÷³í Æú¶ó¸®Åæ°ú È¥¼º °áÇÕÀ» °¡Áø´Ù. ¡°ÀÌ·± ¹Ýµ¥¸£¹ß½º ¸ÞŸ±¸Á¶ÀÇ °æ¿ì¿¡, Æú¶ó¸®ÅæÀÌ ÀÌ°ÍÀÇ ±¸¼º¿ä¼Òµé°ú °áÇÕÇÏ´Â ÀåÁ¡À» °¡Áø´Ù¡±°í Siyuan Dai°¡ ¸»Çß´Ù. ¡°¿ì¸®´Â hBN ½½·¡ºêÀÇ µÎ²²¸¦ º¯È­½ÃÅ´À¸·Î½á hBN ¼ÓÀÇ Æ÷³í Çöó¶óÅæ°ú Á¤Àü±â °ÔÀÌÆ®(electrostatic gating)·Î ±×·¡ÇÉ ¼ÓÀÇ ÇöóÁî¸óÀ» Á¦¾îÇÒ ¼ö ÀÖ¾ú´Ù. ±×·¡¼­ hBN À§¿¡ ±×·¡ÇÉÀÌ ÀûÃþµÈ ¹Ýµ¥¸£¹ß½º ¸ÞŸ±¸Á¶ÀÇ °æ¿ì¿¡, ¿ì¸®´Â Á¤Àü±â °ÔÀÌÆ®¿Í »ùÇà µÎ²²¸¦ º¯È­½ÃÅ´À¸·Î½á ÇÏÀ̺긮µå Æú¶ó¸®ÅæÀ» Á¶ÀýÇÒ ¼ö ÀÖ¾ú´Ù"°í Dai°¡ ¼³¸íÇß´Ù.

ÀÌ·± È¥¼º Æú¶ó¸®ÅæÀº ±×µéÀÇ ºñ-È¥¼º »ó´ë¹°º¸´Ù ÈξÀ ´õ ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù. ÀÌ°ÍÀº ±¤ÇÐ, À½ ±¼Àý·ü(negative refraction index) Àç·á, ÀÚ¹ßÀûÀ¸·Î ±¤À» ¹æÃâÇÏ´Â ºÐ¾ß¿¡ Àû¿ëµÉ ¼ö ÀÖ´Ù. ÀÌ ¸ÞŸ±¸Á¶´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ºÐ¾ß¿¡ »ç¿ëµÉ ¼ö ÀÖ´Ù: ¡±º¯È¯(transformation)¡° ±¤ÇÐ/ÇöóÁî¸ó.

¡°hBN ¼ÓÀÇ Æ÷³í Æú¶ó¸®ÅæÀº »ùÇà ½½·¡ºê ¼ÓÀÇ °ÝÀÚ Áøµ¿¿¡¼­ ¹ß»ýµÇ°í ÀÌ°ÍÀÇ µÎ²²¸¦ º¯°æ½ÃÅ´À¸·Î½á º¯È­µÉ ¼ö Àֱ⠶§¹®¿¡ ¡®°­¼º(rigid)¡¯À» °¡Áø´Ù¡±°í Dai°¡ ¸»Çß´Ù. ¡°¿ì¸®´Â ±×·¡ÇÉ ¼ÓÀÇ ÇöóÁî¸ó°ú hBN ¼ÓÀÇ Æ÷³íÀ» °áÇÕ½ÃÅ´À¸·Î½á hBN ¼ÓÀÇ Æ÷³í Æú¶ó¸®ÅæÀ» º¯È­½ÃÄ×´Ù. ÇöóÁî¸ó°ú Æ÷³íÀÌ ¼­·Î ¹Ý¹ßÇÒ ¶§, Æú¶ó¸®Åæ ºÐ»êÀº º¯È­µÇ°í, µû¶ó¼­ Æú¶ó¸®Åæ ÆÄÀå°ú ÀÌ°ÍÀÇ °­µµ°¡ º¯È­µÈ´Ù. ±×·¡ÇÉÀÇ ÇöóÁî¸ó Ư¼ºµéÀÌ Àü±âÀûÀ¸·Î º¯È­µÉ ¼ö Àֱ⠶§¹®¿¡ ÇÏÀ̺긮µå Æú¶ó¸®ÅæÀÌ Çü¼ºµÉ ¼ö ÀÖ´Ù¡±°í  Dai°¡ ¾ð±ÞÇß´Ù. ÀÌ·± º¯Á¶´Â Goos-Hänchen È¿°úÀ̶ó°í ºÒ¸®°í, ±×·¡ÇÉ/hBN °è¸é¿¡¼­ ¹Ý»çµÉ ¶§ Ãø¸é º¯È­¸¦ °¡Áö´Â Æú¶ó¸®ÅæÀ» ¼³¸íÇÒ ¼ö ÀÖ´Ù. ÀÌ ¿¬±¸´Â Àú³Î Nature Nanotechnology¿¡ ¡°Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial¡±À̶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù(doi:10.1038/nnano.2015.131).

±×¸². ±×·¡ÇÉ/h-BN ¸ÞŸ ±¸Á¶ ¼ÓÀÇ ÇÏÀ̺긮µå ½Ö°î¼± ¹ÝÀÀ.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 7¿ù 6ÀÏ]

[¿ø¹®º¸±â]

Graphene/hBN metastructure goes hyperbolic
Researchers have succeeded in controlling "hyperbolic polaritons" for the first time – in a van der Waals heterostructure made of monolayer graphene on hexagonal boron nitride (hBN). They were able to do this by making use of the surface plasmon polaritons in graphene and the hyperbolic phonon polaritons in hBN to create hybrid hyperbolic plasmon-phonon polaritons in graphene/hBN "metastructures". The work could be important for developing advanced photonics devices, including those made from subdiffractional optical and negative refraction index materials.
 
2D layered materials such as graphene (a planar sheet of carbon atoms arranged in a honeycomb lattice), hBN (also known as "white graphene") and molybdenum disulphide are made up of individual atomic planes weakly held together by van der Waals (vdW) forces. They have unique electronic and mechanical properties that are very different from their 3D counterparts, which means that they might find a use in a host of novel device applications.
hBN, like graphene, has excellent mechanical and thermal properties. Indeed, it has already proved itself to be a good substrate for graphene thanks to the fact that the two materials have very similar lattice constants. It also boasts particularly strong phonon resonances that span a broad region of the technologically important IR band of the electromagnetic spectrum, which means that it could be ideal for use in optoelectronics devices.

Naturally hyperbolic

hBN is also naturally hyperbolic because the dielectric constants in the material are the same in the basal (x-y) plane but have opposite signs in the normal (y) plane and thus take the form of a hyperbola, explain the researchers. Thanks to this property, we can say that the hBN slabs act as waveguides for propagating hyperbolic phonon polaritons (collective resonant modes that are created by coupling photons with optical phonons in polar dielectric crystals).
Phonons are quantized sound waves and some physicists believe that they could be used to transmit information in nanodevices if a suitable medium were to be found. They can be generated in nanoscale structures using laser light, and the wavelength of the phonons produced depends on the periodicity of the nanostructure in which they propagate. hBN is especially interesting in this respect because its layer thickness can be controlled on the atomic scale – just like graphene's.

Controlling phonon polaritons in a vdW heterostructure

Last year, researchers led by Dmitri Basov of the University of California,San Diego, in the US found that phonon polariton waves (which have a much shorter wavelength than light waves) can be "tuned" to particular wavelengths and amplitudes by varying the number of layers in hBN. However, these phonon polaritons are difficult to control, mainly because their electrodynamic properties depend on the crystal lattice structure of hBN.
Now, the same team has shown that they can control these phonon polaritons by making a vdW heterostructure from monolayers of graphene on hBN. The surface plasmon polaritons in graphene are in fact "hybridized" with the hyperbolic phonon polaritons in hBN to make a graphene/hBN heterostructure that contains hyperbolic plasmon-phonon polaritons.

vdW "metastructures"

"In these vdW 'metastructures', the polariton now possesses the combined virtues of each of its components," explains team member and first author of the study, Siyuan Dai. "We can control the plasmons in graphene by electrostatic gating and the phonon polaritons in hBN by varying the hBN slab thickness. So, in the vdW metastructures of graphene on hBN, we can tune the hybrid polaritons by both electrostatic gating and varying the sample thickness."
These hybrid polaritons could find a much wider range of applications than their non-hybridized counterparts, he tells nanotechweb.org. Such applications include subdiffractional optics, negative refraction index materials, and those that spontaneously emit light. The metastructures described in the team's paper might also be used in a new field: "transformation" optics/plasmonics.

The Goos-Hänchen effect

"The phonon polaritons in hBN on its own are 'rigid', since they come from the lattice vibrations in the sample slab and can only be changed by varying its thickness," says Dai. "We tune the phonon polaritons in hBN by coupling the plasmons in graphene and the phonons in hBN. As shown in the image above, when the plasmons and phonons repel each other, the polariton dispersion shifts and thus changes the polariton wavelength and its intensity. And since the plasmon properties of graphene can be tuned electronically, so can the hybrid polaritons'."
This modulation has a name – it is called the Goos-Hänchen effect – and describes the polaritons (propagating as guided waves) undergoing a lateral shift when reflected at the graphene/hBN interface, he adds.
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [µ§¸¶Å©] ´ÜÀÏ ¼ö¼Ò °áÇÕ¿¡ ÀÇÇؼ­ ¹Ù²î´Â Çü±¤ ´Ü¹éÁú ½ºÆåÆ®·³
´ÙÀ½±Û [¿µ±¹] ³»·ú dz·Â ¹ßÀü º¸Á¶±Ý Áß´Ü ½Ã±â ¾Õ´ç°ÜÁ®
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.