Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ȯ°æ»ê¾÷ > ÃֽŴº½º
[¹Ì±¹] ¿ì¼öÇÑ Ã˸Ÿ¦ °³¹ßÇÒ ¼ö ÀÖ°Ô ÇÏ´Â »õ·Î¿î ¿¬±¸°á°ú
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.08.04 Á¶È¸¼ö 179
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ¿ì¼öÇÑ Ã˸Ÿ¦ °³¹ßÇÒ ¼ö ÀÖ°Ô ÇÏ´Â »õ·Î¿î ¿¬±¸°á°ú

µÎ °¡Áö ÁÖ¿ä ¹°¸®Àû Çö»óµé(Ã˸ŠÀÛ¿ë°ú ½ÀÀ±¼º)Àº Àç·áÀÇ Ç¥¸é¿¡¼­ ¹ß»ýÇÑ´Ù. Ã˸ŠÀÛ¿ëÀº È­ÇÐÀû ¹ÝÀÀ ¼Óµµ¸¦ Çâ»ó½ÃŲ´Ù. ½ÀÀ±¼ºÀº ¾×ü°¡ Ç¥¸é¿¡ ¾î¶»°Ô ºÐ»êµÇ´ÂÁö¸¦ °áÁ¤ÇÑ´Ù. ÇöÀç, MIT, ·Î·»½º ¹öŬ¸® ±¹¸³ ¿¬±¸¼Ò(Lawrence Berkeley National Laboratory), ¿ÀÅ©¸®Áö ±¹¸³ ¿¬±¸¼Ò(Oak Ridge National Laboratory)ÀÇ ¿¬±¸ÁøÀº ÀÌ·± µÎ °³ÀÇ ÇÁ·Î¼¼½º°¡ ½ÇÁ¦·Î ¸Å¿ì ¹ÐÁ¢ÇÏ°Ô ¿¬°üµÇ¾ú´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù. ÀÌ ¿¬±¸°á°ú´Â Ưº°ÇÑ ºÐ¾ß¿¡ ÀáÀçÀûÀÎ ÀÌÁ¡À» °¡Áø »õ·Î¿î Ã˸Ű¡ ´õ ½±°Ô °³¹ßµÉ ¼ö ÀÖ°Ô ÇÒ °ÍÀÌ´Ù.

¡°Á¤¸»·Î Èï¹Ì·Î¿î °ÍÀº ¿ì¸®°¡ ½ÀÀ±¼ºÀÇ °Å½ÃÀûÀÎ ÃøÁ¤(Ä£¼ö¼º ¶Ç´Â ¼Ò¼ö¼ºÀÎÁö¿¡ ´ëÇÑ ¿©ºÎ)¿¡ Ç¥¸é À§ÀÇ ¹°°ú »êÈ­¹°ÀÇ ¿øÀÚ ¼öÁØÀÇ »óÈ£ÀÛ¿ëÀ» ¿¬°á½ÃÅ°°í Ã˸ŠƯ¼º°ú ÀÌ°ÍÀ» Á÷Á¢ÀûÀ¸·Î ¿¬°ü½ÃÄ×´Ù´Â Á¡¡±À̶ó°í MITÀÇ W.M. Keck ±³¼ö°¡ ¸»Çß´Ù. ÀÌ ¿¬±¸°á°ú´Â Journal of Physical Chemistry C¿¡ °ÔÀçµÇ¾ú°í, ÀÌ ¿¬±¸´Â °¡½º °¨Áö, ¼öÁú Á¤È­, ¹èÅ͸®, ¿¬·á ÀüÁö¿Í °°Àº ºÐ¾ß¿¡ ¸Å¿ì À¯¿ëÇÑ Æä·Îºê½ºÄ«ÀÌÆ®(perovskite)¶ó°í ºÒ¸®´Â »êÈ­¹°À» ´ë»óÀ¸·Î Çß´Ù.

Ç¥¸éÀÇ Á¥À½¼ºÀ» ÃøÁ¤ÇÏ´Â °ÍÀº ´Ù¼Ò ½±±â ¶§¹®¿¡, Àç·á°¡ Ã˸ŷμ­ ÀûÇÕÇÑÁö¸¦ ¿¹ÃøÇϴµ¥ »ç¿ëµÉ ¼ö ÀÖ´Ù. À̹ø ¿¬±¸ÁøÀº ½ÀÀ±¼º°ú Ã˸ŠƯ¼ºÀÇ Àü¹®°¡µé·Î ±¸¼ºµÇ¾î¼­ °¢°¢ÀÇ Æ¯¼ºÀ» ÁýÁßÀûÀ¸·Î Á¶»çÇÏ¿´´Ù. ¡°¿ì¸®´Â ½ÀÀ±¼º°ú Ã˸ŠÀÛ¿ë(Ç¥¸é Çö»óÀÇ ÁÖ¿ä Ư¼º)ÀÌ ¾î¶»°Ô °ü·ÃµÇ°í Àü±âÀû ±¸Á¶°¡ µÎ °³ÀÇ »çÀ̸¦ ¾î¶»°Ô ¿¬°á½ÃÅ°´ÂÁö¸¦ Áõ¸íÇß´Ù¡±°í Varanasi°¡ ¸»Çß´Ù. ¡°µÎ °³ÀÇ È¿°úµéÀº ´Ù¾çÇÑ »ê¾÷Àû ÇÁ·Î¼¼½º¿¡¼­ Áß¿äÇÏ°í ¸¹Àº °æÇèÀû ¿¬±¸ÀÇ ´ë»óÀÌ µÇÁö¸¸, ¿ì¸®´Â ºÐÀÚ Å©±â¿¡¼­ °è¸é¿¡¼­ ÀϾ´Â °ÍÀ» °ÅÀÇ ¾ËÁö ¸øÇÑ´Ù¡±°í Shao-HornÀÌ ¸»Çß´Ù. ¡°ÀÌ°ÍÀº ºÐÀÚ Å©±â¿¡¼­ ¹ß»ýÇÏ´Â °Í¿¡ ´ëÇÑ »õ·Î¿î ÀÌÇظ¦ Á¦°øÇÑ´Ù¡±°í Shao-HornÀÌ µ¡ºÙ¿´´Ù.

¡°ÀÌ°ÍÀº ÁÖ·Î ½ÇÇèÀûÀÎ ±â¼úÀÌ°í, »õ·Î¿î ÀÌÇظ¦ À̲ø ¼ö ÀÖ´Ù¡±°í Kelsey Stoerzinger°¡ ¼³¸íÇß´Ù. ÀÌ·¯ÇÑ Ç¥¸é °úÇÐÀ» Á¶»çÇϱâ À§ÇÑ ´ëºÎºÐÀÇ ½ÃµµµéÀÌ Áø°øÀ» ÇÊ¿ä·Î ÇÏ´Â ÀåÄ¡µéÀ» »ç¿ëÇÏÁö¸¸, À̹ø ¿¬±¸ÁøÀº »ó¿ÂÀÇ ½ÀÇÑ °ø±â ¼Ó¿¡¼­ ¹ß»ýÇÏ´Â ¹ÝÀÀÀ» Á¶»çÇÏ´Â ÀåÄ¡¸¦ »ç¿ëÇß´Ù. ÀÌ°ÍÀº ¼öÁõ±âÀÇ ¾çÀ» º¯È­½Ãų ¼ö ÀÖ´Ù. ´ë±â¾Ð ±¤ÀüÀÚ ºÐ±¤ÀåÄ¡(ambient pressure X-ray photoelectron spectroscopy)¶ó°í ºÒ¸®´Â ½Ã½ºÅÛÀ» »ç¿ëÇؼ­, À̹ø ¿¬±¸ÁøÀº ¹°°úÀÇ ¹ÝÀÀÀÌ Àüü ÇÁ·Î¼¼½ºÀÇ ÇÙ½ÉÀ̶ó´Â °ÍÀ» ¹àÇû´Ù.

¹° ºÐÀÚµéÀº ¼ö»ê±â°¡ Çü¼ºÇϱâ À§Çؼ­ ±úÁø´Ù. ¼ö»ê±â´Â ÇÑ °³ÀÇ ¼ö¼Ò¿Í ÇÑ °³ÀÇ »ê¼Ò°¡ °áÇÕµÈ ÇüŸ¦ °¡Áö°í, Àç·á Ç¥¸é¿¡ °áÇյȴÙ. ÀÌ·± ¹ÝÀÀ¼º È­ÇÕ¹°Àº Ç¥¸éÀÇ ½ÀÀ±¼ºÀ» Áõ°¡½ÃÅ°Áö¸¸, È­ÇÐÀû ¹ÝÀÀÀ» ÃËÁøÇÏ´Â ´É·ÂÀ» ÀÚ¹ßÀûÀ¸·Î ¾ïÁ¦ÇÑ´Ù. µû¶ó¼­ À̹ø ¿¬±¸ÁøÀº ³ôÀº Ã˸ŠȰ¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â ºÐ¾ßÀÇ °æ¿ì¿¡ Ç¥¸éÀ» ¼Ò¼ö¼º ¶Ç´Â ºñ-Á¥À½¼ºÀ¸·Î ¸¸µå´Â °ÍÀÌ ÇÙ½É ¿ä±¸Á¶°ÇÀ̶ó´Â °ÍÀ» ¹ß°ßÇß´Ù. ¡°ÀÌ·± ÀÌÇØ´Â ¿ì¸®°¡ »õ·Î¿î Ã˸Ÿ¦ µðÀÚÀÎÇϴµ¥ µ½´Â´Ù¡±°í Stoerzinger°¡ ¸»Çß´Ù. ¡°ÁÖ¾îÁø Àç·á°¡ ¹°°ú ³·Àº ģȭ¼ºÀ» °¡Áø´Ù¸é, ÀÌ°ÍÀº Ã˸ŠȰ¼º¿¡ ´ëÇÑ ´õ ³ôÀº ģȭ·ÂÀ» °¡Áø´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù¡±°í Stoerzinger°¡ µ¡ºÙ¿´´Ù.

¡°ÀÌ°ÍÀº Ãʱ⠿¬±¸°á°úÀÌ°í, ¼ö»ê±â ģȭ¼ºÀÇ ¹üÀ§¿Í ´Ù¾çÇÑ Àç·áµé¿¡¼­ ÀÌ·± Ãß¼¼°¡ ¹ß»ýÇÏ´ÂÁö´Â Â÷ÈÄ¿¡ Á¶»çµÇ¾î¾ß ÇÒ °Í¡±À̶ó°í À̹ø ¿¬±¸ÁøÀº ¸»Çß´Ù. À̹ø ¿¬±¸ÁøÀº ÀÌ ºÐ¾ß¿¡ ´ëÇÑ Ãß°¡ÀûÀÎ Á¶»ç¸¦ ÀÌ¹Ì ½ÃÀÛÇß´Ù. ¡°ÀÌ ¿¬±¸´Â Àç·á¿Í Ç¥¸éÀ» »õ·Ó°Ô °íÂûÇÒ ¼ö ÀÖ´Â °è±â¸¦ ¿­¾î ÁÙ °Í¡±À̶ó°í À̹ø ¿¬±¸ÁøÀº ¸»Çß´Ù. ÀÌ ¿¬±¸°á°ú´Â Àú³Î Journal of Physical Chemistry C¿¡ ¡±Reactivity of Perovskites with Water: Role of Hydroxylation in Wetting and Implications for Oxygen Electrocatalysis¡°¶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù.

±×¸². ¿ÞÂÊ ¹°ÁúÀº ¿ì¼öÇÑ ½ÀÀ±¼ºÀ» º¸¿©ÁÖ°í ÀÖ°í, Ç¥¸é¿¡ ¼ö»ê±â°¡ ºÎÂøµÇ¾î À־ ¹°¹æ¿ïÀÌ ÆòÆíÇÏ°Ô ÆÛÁ® Àִµ¥, ÀÌ°ÍÀº Ã˸ŠȰ¼ºÀ» ÀúÇØÇÑ´Ù. ¿À¸¥ÂÊ ¹°ÁúÀº ¼Ò¼ö¼º Ư¼ºÀ» °¡Áö°í ÀÖ°í, Ã˸ŠȰ¼ºÀ» ÃËÁøÇϴµ¥, ÀÌ°ÍÀº ÀÛÀº ¿À·»Áö ºÐÀÚµé °£ÀÇ ¹ÝÀÀÀ¸·Î Áõ¸íµÈ´Ù.

[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 8¿ù 3ÀÏ]
 
[¿ø¹®º¸±â]
 
How to look for a few good catalysts

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Now researchers at MIT and other institutions have found that these two processes, which had been considered unrelated, are in fact closely linked. The discovery could make it easier to find new catalysts for particular applications, among other potential benefits.

¡°What¡¯s really exciting is that we¡¯ve been able to connect atomic-level interactions of water and oxides on the surface to macroscopic measurements of wetting, whether a surface is hydrophobic or hydrophilic, and connect that directly with catalytic properties,¡± says Yang Shao-Horn, the W.M. Keck Professor of Energy at MIT and a senior author of a paper describing the findings in the Journal of Physical Chemistry C ("Reactivity of Perovskites with Water: Role of Hydroxylation in Wetting and Implications for Oxygen Electrocatalysis").

The research focused on a class of oxides called perovskites that are of interest for applications such as gas sensing, water purification, batteries, and fuel cells.

Since determining a surface¡¯s wettability is ¡°trivially easy,¡± says senior author Kripa Varanasi, an associate professor of mechanical engineering, that determination can now be used to predict a material¡¯s suitability as a catalyst. Since researchers tend to specialize in either wettability or catalysis, this produces a framework for researchers in both fields to work together to advance understanding, says Varanasi, whose research focuses primarily on wettability; Shao-Horn is an expert on catalytic reactions.
¡°We show how wetting and catalysis, which are both surface phenomena, are related,¡± Varanasi says, ¡°and how electronic structure forms a link between both.¡±

While both effects are important in a variety of industrial processes and have been the subject of much empirical research, ¡°at the molecular level, we understand very little about what¡¯s happening at the interface,¡± Shao-Horn says. ¡°This is a step forward, providing a molecular-level understanding.¡±

¡°It¡¯s primarily an experimental technique¡± that made the new understanding possible, explains Kelsey Stoerzinger, an MIT graduate student and the paper¡¯s lead author. While most attempts to study such surface science use instruments requiring a vacuum, this team used a device that could study the reactions in humid air, at room temperature, and with varying degrees of water vapor present.

Experiments using this system, called ambient pressure X-ray photoelectron spectroscopy, revealed that the reactivity with water is key to the whole process, she says.

The water molecules break apart to form hydroxyl groups — an atom of oxygen bound to an atom of hydrogen — bonded to the material¡¯s surface. These reactive compounds, in turn, are responsible for increasing the wetting properties of the surface, while simultaneously inhibiting its ability to catalyze chemical reactions. Therefore, for applications requiring high catalytic activity, the team found, a key requirement is that the surface be hydrophobic, or non-wetting.

¡°Ideally, this understanding helps us design new catalysts,¡± Stoerzinger says. If a given material ¡°has a lower affinity for water, it has a higher affinity for catalytic activity.¡±

Read more:Shao-Horn notes that this is an initial finding, and that ¡°extension of these trends to broader classes of materials and ranges of hydroxyl affinity requires further investigation.¡± The team has already begun further exploration of these areas. This research, she says, ¡°opens up the space of materials and surfaces we might think about¡± for both catalysis and wetting.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¿µ±¹] ¿Â½Ç°¡½º °¨¼Ò¿Í ¸Þź ¹æÃâ°¨¼Ò°¡ °¡´ÉÇÑ »õ·Î¿î º­
´ÙÀ½±Û [ºê¶óÁú] ¼ÒÇü ±×¸°¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼¼±Ý ¸éÁ¦ È®´ë
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.