Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ȯ°æ»ê¾÷ > ÃֽŴº½º
[°øÅë] ³ª³ë Å©±â¿¡¼­ÀÇ ¿¬·á ÀüÁö È¿À² Çâ»ó ¹æ¾È
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.08.13 Á¶È¸¼ö 298
ÆÄÀÏ÷ºÎ
[°øÅë] ³ª³ë Å©±â¿¡¼­ÀÇ ¿¬·á ÀüÁö È¿À² Çâ»ó ¹æ¾È

Àü¼¼°è ¿¡³ÊÁö ¼ö¿ä¸¦ ¸¸Á·½Ãų ¸¶¹ýÀÇ ÅºÈ¯Àº Á¸ÀçÇÏÁö ¾Ê´Â´Ù. ÇÏÁö¸¸ ÀÚ¸³¼º È­ÇÐ ¹ÝÀÀÀ¸·ÎºÎÅÍ Á÷Á¢ÀûÀ¸·Î È°¿ë °¡´ÉÇÑ Àü±â ¿¡³ÊÁö¸¦ ÅëÇÑ ¿¬·á ÀüÁö´Â È­¼® ¿¬·áº¸´Ù ´õ Àú·ÅÇÑ ´ëü ¿¡³ÊÁö¿øÀÌ µÉ ¼ö ÀÖ´Ù.

°úÇÐÀÚµéÀº ÀÌ·¯ÇÑ ¿¬·á ÀüÁö ³»¿¡¼­ ´õ ºü¸¥ ¿¡³ÊÁö ÀüȯÀ» °¡´ÉÇÏ°Ô Çϱâ À§Çؼ­, ±Í±Ý¼ÓÀ̶ó ºÒ¸®´Â Ưº°ÇÑ ±Ý¼Ó, Áï ±Ý, Àº, ¹é±Ý µîÀ» ÀÌ¿ëÇØ ¸¸µç ³ª³ë ÀÔÀÚ¸¦ Àü±Ø Ç¥¸éÀ» µû¶ó ºÐ»ê½ÃÄ×´Ù. ÀÌ·¯ÇÑ ±Ý¼ÓÀº ¸ÅÅ©·Î(macro) ±Ô¸ð¿¡¼­ ´Ù¸¥ ±Ý¼Ó¿¡ È­ÇÐÀûÀ¸·Î ¹ÝÀÀÇÒ »Ó¸¸ ¾Æ´Ï¶ó ³ª³ë(nano) ±Ô¸ð¿¡¼­´Â ´õ¿í ¹ÝÀÀ¼ºÀÌ Ä¿Áö°Ô µÈ´Ù. ÀÌ·¯ÇÑ ±Ý¼ÓÀ» ÅëÇØ ¸¸µé¾îÁø ³ª³ë ÀÔÀÚ´Â Ã˸Åó·³ ÇൿÇϸç, ¿¬·á·ÎºÎÅÍ ÀüÀÚ¸¦ À¯¸®½ÃÅ°´Â Çʼö È­ÇÐ ¹ÝÀÀÀÇ ¼Óµµ¸¦ Çâ»ó½ÃÅ°´Âµ¥ ÀÏÁ¶ÇÑ´Ù.

³ª³ë ÀÔÀÚ°¡ Àü±Ø »ó¿¡¼­ ºÒ²ÉÀÌ Æ¢°Å³ª ¹æÀüµÇ´Â µ¿¾È, ¼­·Î °£¿¡ Á¢ÇÕÁ¦(putty)ó·³ À¸±úÁö¸é¼­ Ä¿´Ù¶õ Ŭ·¯½ºÅ͸¦ Çü¼ºÇÏ°Ô µÈ´Ù. ÀÌ·¯ÇÑ ¾ÐÃà °æÇ⼺Àº ¼Ò°á(sintering)À̶ó ºÒ¸®¸ç, Ã˸ŠƯ¼ºÀÇ ³ª³ë ÀÔÀÚ¿Í »óÈ£ ÀÛ¿ëÇÏ´Â ¿¬·áÀÇ ºÐÀÚ¿¡ ÀÌ¿ë °¡´ÉÇÑ Àüü Ç¥¸éÀûÀº °¨¼ÒÇÏ°Ô µÈ´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ Çö»óÀ» ¹æÁöÇÔÀ¸·Î½á ¿¬·á ÀüÁöÀÇ ¿ÏÀüÇÑ ÀáÀçÀû ¼º´É±îÁö ½ÇÇö½Ãų ¼ö ÀÖ°Ô µÈ´Ù.

ÀϺ» ¿ÀÅ°³ª¿Í °úÇбâ¼ú¿¬±¸¼Ò(Okinawa Institute of Science and Technology) ¼³°èÆÀÀº ¹Ì±¹ SLAC ±¹°¡¿¬±¸½Ç°ú ¿À½ºÆ®¸®¾Æ ÀüÀÚÇö¹Ì°æ¹×³ª³ëºÐ¼®¼¾ÅÍ¿ÍÀÇ Çùµ¿ ¿¬±¸¸¦ ÅëÇØ, ±Í±Ý¼Ó ³ª³ë ÀÔÀÚÀÇ ¾ÐÃà Çö»óÀ» ¹æÁöÇÏ´Â ±â¼úÀ» °³¹ßÇϴµ¥ ¼º°øÇÏ¿´´Ù. ¿¬±¸ÆÀÀº ±Í±Ý¼Ó ³ª³ë ÀÔÀÚ¸¦ ±Ý¼Ó»êÈ­¹°·Î ¸¸µé¾îÁø ´Ù°ø¼º ²®Áú(porous shell) ³»ºÎ¿¡ °³º°ÀûÀ¸·Î ĸ½¶È­ÇÏ¿´´Ù. ÀϺ» ¿¬±¸ÆÀÀº ÇØ´ç ¿¬±¸ °á°ú¸¦ ¡°Nanoscale¡± ÃÖ½ÅÈ£¿¡ °ÔÀçÇÏ¿´À¸¸ç, À̹ø ¿¬±¸ ¼º°ú´Â È¿À²ÀÌ Çâ»óµÈ ¿¬·á ÀüÁö Á¦Á¶¸¦ À§ÇÑ ³ª³ë Ã˸ŠºÐ¾ß¿¡ Áï°¢ÀûÀ¸·Î ÀÀ¿ëµÉ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀδÙ.

ÀϺ» ¿¬±¸ÆÀÀÌ °³¹ßÇÑ Ä¸½¶Çü ¸ðµ¨Àº »õ·Ó°Ô ¼³°èµÈ ½Ã½ºÅÛÀÌ´Ù. ¿¬±¸ÆÀÀº Æȶóµã(Palladium) ³ª³ë ÀÔÀÚ¸¦ ¸¶±×³×½· »êÈ­¹° ²®Áú ³»¿¡ ĸ½¶È­ÇÑ ÈÄ, ÀÌ·¯ÇÑ ÄÚ¾î-½©(core-shell) Á¶ÇÕÀ» Àü±Ø »ó¿¡ ºÐ»ê½ÃÄ×´Ù. ±× ÈÄ, ¸Þź¿Ã ¿¬·á ÀüÁö ³»¿¡¼­ ÀϾ´Â Àü±âÈ­ÇÐ ¹ÝÀÀ ¼Óµµ°¡ Çâ»óµÈ ħÀü±Ø ¼º´ÉÀ» ÃøÁ¤ÇÏ¿´´Ù. ¿¬±¸ÆÀÀº ĸ½¶È­µÈ Æȶóµã ³ª³ë ÀÔÀÚ°¡ ±âº» Æȶóµã ³ª³ë ÀÔÀÚ¿¡ ºñÇØ »ó´çÈ÷ ¿ì¼öÇÑ ¼º´ÉÀ» °¡ÁüÀ» È®ÀÎÇÏ¿´´Ù.

ÀϺ» ¿¬±¸ÆÀÀº ÀÌÀüÀÇ ¸¶±×³×½·°ú Æȶóµã ³ª³ëÀÔÀÚ¿¡ ´ëÇÑ °³º° ¿¬±¸¸¦ ÅëÇØ, ¸¶±×³×½· »êÈ­¹° ³ª³ë ÀÔÀÚ°¡ ±Í±Ý¼Ó ³ª³ë ÀÔÀÚ ÁÖº¯¿¡¼­ ´Ù°ø¼º ²®ÁúÀ» Çü¼ºÇÔÀ» È®ÀÎÇÏ¿´´Ù. ÀÌ·¸°Ô Ãß°¡µÈ ²®ÁúÀÇ ´Ù°ø¼ºÀÌ, ĸ½¶È­µÈ Æȶóµã¿¡ µµ´ÞÇÏ´Â ¿¬·á ºÐÀÚ¸¦ ºÐº°ÀûÀ¸·Î Åë°ú½ÃÅ°Áö´Â ¾Ê´Â´Ù. ÀÌ´Â ÀüÀÚ Çö¹Ì°æ À̹ÌÁö·ÎºÎÅÍ, ¸¶±×³×½· ²®ÁúÀÌ ´Ü¼øÈ÷ ¼­·Î ºÎÂøÇÏ°íÀÚ ÇÏ´Â Èû¿¡ µû¶ó Æȶóµã ÄÚ¾î °£ÀÇ °ø°£ Á¦°øÀÇ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ½ÀÌ È®ÀεǾú´Ù. À̸¦ ÅëÇØ ¿ÏÀüÇÑ ¹ÝÀÀ ÀáÀç·ÂÀÌ ½ÇÇöµÇ°Ô µÈ´Ù.

ÀϺ» ¿¬±¸ÆÀ¿¡ ÀÇÇØ ¼³°èµÈ Áøº¸µÈ ³ª³ë ÀÔÀÚ ÀûÃþ ½Ã½ºÅÛÀº ½ÇÇè ÀÎÀÚÀÇ ¹Ì¼¼ÇÑ Á¶ÀýÀ» °¡´ÉÇÏ°Ô ÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ĸ½¶ ²®ÁúÀÇ µÎ²² ¹× »ó´ëÀûÀ¸·Î ¿ëÀÌÇÑ ÄÚ¾î ³» Æȶóµã ³ª³ëÀÔÀÚ °³¼ö º¯µ¿±îÁö °¡´ÉÇÏ°Ô ÇÑ´Ù. ³ª³ë ÀÔÀÚÀÇ Å©±â ¹× ±¸Á¶ º¯°æÀº ¼­·Î ´Ù¸¥ ÀÀ¿ëÀ» À§ÇÑ ¹°¸®Àû, È­ÇÐÀû ¼ºÁúÀÇ º¯È­¸¦ À̲ø¾î³¾ ¼ö ÀÖ´Ù.

Mukhles Sowwan ±³¼ö´Â ¡°À̹ø¿¡ °³¹ßµÈ ±â¼úÀ» ÅëÇØ, ´õ ¸¹Àº ÄÚ¾î-½© Á¶ÇÕÀ» ½ÃµµÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù. Æȶóµã º¸´Ù Àú·ÅÇÑ ±Ý¼Ó, Áï ´ÏÄÌ, ö µî¿¡µµ Àû¿ëÇØ º¼ ¼ö ÀÖ´Ù. À̹ø ¿¬±¸ °á°ú´Â »õ·Î¿î ¿¬±¸ ¹æÇâÀ» Áö¼ÓÇÒ ¼ö ÀÖÀ½À» ÃæºÐÈ÷ º¸¿©ÁÖ°í ÀÖ´Ù¡±°í µ¡ºÙ¿´´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 8¿ù 12ÀÏ]
 
[¿ø¹®º¸±â]

Pouring fire on fuels at the nanoscale

There are no magic bullets for global energy needs. But fuel cells in which electrical energy is harnessed directly from live, self-sustaining chemical reactions promise cheaper alternatives to fossil fuels.

To facilitate faster energy conversion in these cells, scientists disperse nanoparticles made from special metals called 'noble' metals, for example gold, silver and platinum along the surface of an electrode.

These metals are not as chemically responsive as other metals at the macroscale but their atoms become more responsive at the nanoscale. Nanoparticles made from these metals act as a catalyst, enhancing the rate of the necessary chemical reaction that liberates electrons from the fuel. While the nanoparticles are being sputtered onto the electrode they squash together like putty, forming larger clusters. This compacting tendency, called sintering, reduces the overall surface area available to molecules of the fuel to interact with the catalytic nanoparticles, thus preventing them from realizing their full potential in these fuel cells.

Research by the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), in collaboration with the SLAC National Laboratory in the USA and the Austrian Centre for Electron Microscopy and Nanoanalysis, has developed a way to prevent noble metal nanoparticles from compacting, by encapsulating them individually inside a porous shell made of a metal oxide. The OIST researchers published their findings in Nanoscale. Their work has immediate applications in the field of nano-catalysis for the manufacturing of more efficient fuel cells.

The OIST researchers designed a novel system. They encapsulated Palladium nanoparticles in a shell of Magnesium oxide. Then they dispersed this core-shell combination on an electrode and measured the immersed electrode's abilities in improving the rate of the electrochemical reaction that occurs in methanol fuel cells. They demonstrated that encapsulated Palladium nanoparticles give a significantly superior performance than bare Palladium nanoparticles.

The OIST researchers had previously realized that Magnesium oxide nanoparticles could form porous shells around noble metal nanoparticles while studying Magnesium and Palladium nanoparticles separately. The porosity of this added armor ensures it does not screen molecules of the fuel from reaching the encapsulated Palladium. Electron microscopy images confirmed that the Magnesium oxide shell simply acts as a spacer between the Palladium cores as they try to stick to each other, letting each to realize its full reactive potential.

The advanced nanoparticle deposition system at OIST allowed the researchers to fine tune the experimental parameters and vary the thickness of the encapsulating shell as well as the number of Palladium nanoparticles in the core with relative ease. Tuning sizes and structures of nanoparticles alters their physical and chemical properties for different applications.

"More core-shell combinations can be tried using our technique, with metals cheaper than Palladium for instance, like Nickel or Iron. Our results show enough promise to continue in this new direction," said Vidyadhar Singh, the paper's first author, and postdoctoral fellow under the supervision of Prof. Mukhles Sowwan, the director of OIST's Nanoparticles by Design Unit, who was also a corresponding author of the paper.
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [À̶õ] À̶óÅ© ¹Ù½º¶ó °¡½ºº¹ÇÕÈ­·Â¹ßÀü¼Ò ÇÁ·ÎÁ§Æ® ¹ÎÀÚ °Ç¼³
´ÙÀ½±Û [Áß±¹] ¼öµµ±Ç Àü±âÀÚµ¿Â÷ ÃæÀü ÀÎÇÁ¶ó¸Á ±¸Ãà
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.