Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2022] [¹Ì±¹] ¹°¿¡¼­ PFAS Èí¼öÇÏ´Â Àç»ç¿ë °¡´ÉÇÑ ½ºÆÝÁö °³¹ß
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2022.08.29 Á¶È¸¼ö 781
ÆÄÀÏ÷ºÎ

[¹Ì±¹] ¹°¿¡¼­ PFAS Èí¼öÇÏ´Â Àç»ç¿ë °¡´ÉÇÑ ½ºÆÝÁö °³¹ß

¾Ö¸®Á¶³ª ´ëÇС¤³ë´ø ¾Ö¸®Á¶³ª ´ëÇÐÀÇ ¿¬±¸¿ø ÆÀ, ½Ä¼ö¿¡¼­ PFAS Á¦°ÅÇÏ´Â Àç»ý °¡´ÉÇÑ ¹æ¹ý ¿¬±¸



PFAS´Â ¼ö½Ê ³â µ¿¾È ¼Ò¹æ¿ë Æû, ¸ÞÀÌÅ©¾÷ ¹× ºñÁ¡Âø ÆÒ°ú °°Àº Á¦Ç°¿¡ »ç¿ëµÇ¾î ¿Ô´Ù.  [»çÁøÁ¦°ø = UArizona]

PFAS´Â ¼ö½Ê ³â µ¿¾È ¼Ò¹æ¿ë Æû, È­ÀåÇ° ¹× ºñÁ¡Âø ÆÒ°ú °°Àº Á¦Ç°¿¡ »ç¿ëµÇ¾î ¿Ô´Ù.  [»çÁøÁ¦°ø = UArizona]

 

¾Ö¸®Á¶³ª ´ëÇб³(University of Arizona, UArizona)¿Í ³ë´ø ¾Ö¸®Á¶³ª ´ëÇб³(Northern Arizona University) ¿¬±¸ÁøÀº ¹°¿¡¼­ PFAS·Î ¾Ë·ÁÁø È­ÇÐ ¹°Áú ±×·ìÀ» Á¦°ÅÇϱâ À§ÇØ Àç»ç¿ë °¡´ÉÇÑ Æ¯¼ö ½ºÆÝÁö¸¦ °³¹ßÇÏ°í ÀÖ´Ù°í ¹àÇû´Ù. ºñÅ° Ä«¶ó´ÏÄݶó(Vicky Karanikola) È­ÇÐȯ°æ°øÇаú Á¶±³¼ö°¡ À̲ô´Â ¿¬±¸ÆÀÀº ¾Ö¸®Á¶³ªÁÖ ¸®Á¨Æ® ÀÌ»çȸ·ÎºÎÅÍ 148¸¸7õ ´Þ·¯¸¦ ¹Þ¾Ò°í, UArizona´Â 124¸¸ ´Þ·¯¸¦ ÇÒ´ç¹Þ¾Ò´Ù.


PFAS´Â ÆÛÇ÷ç¿À·Î¾Ëų(perfluoroalkyl) ¹× Æú¸®Ç÷ç¿À·Î¾Ëų(polyfluoroalkyl) ¹°ÁúÀÇ ¾àÀÚ(abbreviation)·Î, ¹°, ¿­ ¹× ±×¸®½º(grease)¿¡ ³»¼ºÀÌ ÀÖ´Â ¿À·¡ Áö¼ÓµÇ´Â Á¦Á¶ È­Çй°ÁúÀÌ´Ù. ÀÌ ¹°ÁúÀº È­ÀåÇ°, ½ÄÇ° Æ÷Àå, ºÙÁö ¾Ê´Â ÆÒ, ºñ¿Ê, Ä«Æê ¹× ¼Ò¹æ¿ë Æû°ú °°Àº Á¦Ç°¿¡ ¼ö½Ê ³â µ¿¾È »ç¿ëµÇ¾î ¿Ô´Ù. ±×·¯³ª PFAS¿¡ ´ëÇÑ ³ëÃâÀÌ Ãâ»êÀ² °¨¼Ò, ¾î¸°ÀÌÀÇ ¹ß´Þ Áö¿¬ ¹× ÀϺΠ¾Ï À§Çè Áõ°¡¿Í °°ÀÌ Àΰ£ÀÇ °Ç°­»ó¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù´Â °ÍÀÌ ¹àÇôÁ³´Ù.


¿ÞÂʺÎÅÍ È­ÇаøÇÐ ´ëÇпø»ýÀÎ UA¸®Á¶³ªÀÇ ¿¬±¸¿ø Ä«¸Þ·Ð ¸»·ÎÀÌ(Cameron Malloy), È­ÇÐ ¹× ȯ°æ°øÇÐ Á¶±³¼öÀÎ ¼öÄÝ »ç¹Ù°¡Æ®·´(Sucol Savagatrup), È­ÇÐ ¹× ȯ°æ°øÇÐ Á¶±³¼öÀÎ ºñÅ° Ä«¶ó´ÏÄݶó(Vicky Karanikola), »ý¹°½Ã½ºÅÛ°øÇÐ ´ëÇпø»ý Àè À£ÇãÆ®(Jack Welchert)°¡ ÀÖ´Ù. [»çÁøÁ¦°ø = UArizona(¿¡¹Ð¸® µðÅ©¸¸)]

¿ÞÂʺÎÅÍ È­ÇаøÇÐ ´ëÇпø»ýÀÎ UA¸®Á¶³ªÀÇ ¿¬±¸¿ø Ä«¸Þ·Ð ¸»·ÎÀÌ(Cameron Malloy), È­ÇÐȯ°æ°øÇÐ Á¶±³¼öÀÎ ¼öÄÝ »ç¹Ù°¡Æ®·´(Sucol Savagatrup), È­ÇÐȯ°æ°øÇÐ Á¶±³¼öÀÎ ºñÅ° Ä«¶ó´ÏÄݶó(Vicky Karanikola), »ý¹°½Ã½ºÅÛ°øÇÐ ´ëÇпø»ý Àè À£ÇãÆ®(Jack Welchert)°¡ ÀÖ´Ù. [»çÁøÁ¦°ø = UArizona(¿¡¹Ð¸® µðÅ©¸¸)]

 

PFASÀÇ ³»±¸¼º(¸¹Àº ¿ëµµ¿¡ À¯¿ëÇÑ Ç°Áú°ú µ¿ÀÏ)Àº ¿ì¸®ÀÇ È¯°æ¿¡¼­ PFAS¸¦ Á¦°ÅÇÏ´Â °ÍÀÌ ¸Å¿ì ¾î·Æ´Ù´Â °ÍÀ» ÀǹÌÇϸç, ÀÌ È­ÇÐ ¹°ÁúÀº Åõ¼Õ(Tucson)À» Æ÷ÇÔÇÑ Àü ¼¼°è Áö¿ªÀÇ ¼ö¿øÀ¸·Î È®»êµÆ´Ù. PFASÀÇ Á¦°Å´Â ÇöÀç ÁøÇàÁßÀÌ´Ù. ¿¹¸¦ µé¾î, ¼¾Æ®·² Åõ½Ñ PFAS ÇÁ·ÎÁ§Æ®(Central Tucson PFAS Project)´Â µ¥À̺ñ½º-¸óź(Davis-Monthan) °ø±º±âÁö Àα٠ÁöÇϼöÀÇ PFAS ¿À¿°À» Á¦°ÅÇϱâ À§ÇØ 2022³â ÃÊ¿¡ ½ÃÀ۵ƴÙ.


·Î¹öÆ® C. ·Îºó½º(Robert C. Robbins) ¾Ö¸®Á¶³ª ´ëÇÐ ÃÑÀåÀº ¡°PFAS ¿À¿°Àº ¾Ö¸®Á¶³ª¿Í ±× ¿Ü Áö¿ª¿¡¼­ Áß¿äÇÑ ¹®Á¦À̸ç, Á¶±â ±³¼öÁøÀ¸·Î ±¸¼ºµÈ ÀÌ ¿¬±¸ÆÀÀÌ ÀÌ·¯ÇÑ ³ë·ÂÀ» ÁÖµµÇÏ°í ÀÖ´Ù´Â °ÍÀÌ ¸Å¿ì ÀÚ¶û½º·´´Ù¡±¶ó¸ç, "ÀÌ ¿¬±¸ÆÀÀº PFAS °¨Áö ¹× Á¦°Å¸¦ À§ÇÑ º¸´Ù Áö¼Ó°¡´ÉÇÑ ¹æ¹ýÀ» °³¹ßÇÔÀ¸·Î½á ¾Ö¸®Á¶³ª ÁÖº¯ Áö¿ª»çȸ¿¡¼­ ¹°À» ´õ ¾ÈÀüÇÏ°Ô ¸¸µå´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ°í ÀÖ´Ù"¶ó°í ¸»Çß´Ù.


ÀÌ ¹é¸¸ ´Þ·¯Â¥¸® ³ë·ÂÀÇ Ã¹ ¹ø° ´Ü°è´Â »óÁ¡¿¡¼­ ±â¼ºÇ°À» ±¸ÀÔÇÏ´Â °ÍÀÌ´Ù.


µ¶¼Ò Á¤È­ ½ºÆ½ ¾Ø ¾ð½ºÆ½ ¸¸µé±â(Making toxin cleanup stick and unstick)


¸¹Àº ½ºÆÝÁö´Â ½Ä¹°¿¡¼­ ¹ß°ßµÇ´Â dzºÎÇÑ À¯±â È­ÇÕ¹°ÀÎ ¼¿·ê·Î¿À½º·Î ¸¸µé¾îÁö¸ç, Á¾ÀÌ¿Í Á÷¹°°ú °°Àº Àç·á¸¦ ¸¸µå´Â µ¥ »ç¿ëµÈ´Ù. ¹°¿¡¼­ PFAS¸¦ ²ø¾î³»±â À§ÇØ ¿¬±¸ÁøÀº PFAS¸¦ ÈíÂøÇÒ ¼ö ÀÖ´Â Àç·á ¶Ç´Â º¸´Ù °£´ÜÇÏ°Ô PFAS°¡ ºÎÂøÇÒ ¼ö ÀÖ´Â Àç·á¸¦ »ç¿ëÇØ¾ß ÇÑ´Ù. ÀÌ ºÎºÐÀº PFAS°¡ ¼¿·ê·Î¿À½º¸¦ ºñ·ÔÇÑ ¸¹Àº ¹°Áú¿¡ ÀÚ¿¬½º·´°Ô ´Þ¶óºÙ±â ¶§¹®¿¡ ½±´Ù. ¿¬±¸ÆÀÀº PFAS°¡ À¯¸®¿¡ ´Þ¶óºÙ±â ¶§¹®¿¡ ¸ðµç ½ÇÇè¿¡ Æú¸®ÇÁ·ÎÇÊ·» ¿ë±â¸¦ »ç¿ëÇؾ߸¸ ÇÑ´Ù.


´Ü¼øÇÑ ¼¿·ê·Î¿À½º ½ºÆÝÁö´Â ÃÖÀûÀÇ ±â°ø Å©±â ¹× ¹Ðµµ¿Í °°Àº ¿äÀÎÀÇ Ãʱ⠿¬±¸¿¡ ÁÁÀº ¹Ý¸é, PFAS Á¦°Å¸¦ À§ÇØ °³¹ß ÁßÀÎ ½ºÆÝÁö´Â ÈξÀ ´õ º¹ÀâÇÏ´Ù. ÀÌ ½ºÆÝÁö´Â PFAS·Î ¿À¿°µÈ ¹°À» Èí¼öÇÑ ´ÙÀ½ PFAS°¡ °íÂøµÈ »óÅ·ΠÀÖ´Â µ¿¾È ±ú²ýÇÑ ¹°À» Â¥³¾ °ÍÀÌ´Ù. ±×·± ´ÙÀ½, ÃßÃâ ¿ë¾×ÀÌ ½ºÆÝÁö¿¡¼­ PFAS¸¦ Á¦°ÅÇÏ¿© ´Ù½Ã »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÑ´Ù.


¹°¿¡¼­ PFAS¸¦ Á¦°ÅÇÏ´Â ÀϹÝÀûÀÎ ¹æ¹ý Áß Çϳª´Â PFAS°¡ Àß ´Þ¶óºÙ´Â ¶Ç ´Ù¸¥ ¹°ÁúÀÎ °ú¸³ È°¼ºÅº(GAC)À» »ç¿ëÇÏ´Â °ÍÀÌ´Ù. ÇÏÁö¸¸ Á¢ÂøÀ» ÇØÁ¦ÇÏ´Â µ¥ ÀÖ¾î ¹®Á¦°¡ ÀÖ´Ù. GAC¿¡¼­ PFAS¸¦ Á¦°ÅÇÏ¿© ź¼ÒÀç·á¸¦ ´Ù¸¥ Á¦°Å ´Ü°è¿¡ Àç»ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀº ºñ¿ëÀÌ ¸¹ÀÌ µé°í ¾î·Æ´Ù.


Ä«¶ó´ÏÄÝ¶ó ±³¼ö´Â "GAC¿¡¼­ ¹æÃâÇÏ´Â µ¥ ÇÊ¿äÇÑ ¿¡³ÊÁöÀÇ ¾çÀº ¾öû³ª´Ù"¶ó¸ç, "ÀÌ ÇÁ·ÎÁ§Æ®ÀÇ Çõ½ÅÀº ¿ì¸®°¡ Àç»ý °¡´ÉÇÑ ¹æ¹ý¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ¿ì¸®´Â ¹«¾ð°¡¸¦ ÇÑ ¹ø¸¸ »ç¿ëÇÏ°í ¹ö¸®´Â À庮À» ±ú°í ½Í´Ù. ¿ì¸®´Â À¯ÁöÇÒ ¸¸Å­¸¸ Èí¼öÇÒ ¼ö ÀÖ´Â ÃÖÀûÀÇ ÁöÁ¡À» ãÀ¸·Á°í ³ë·ÂÇÏ°í ÀÖÁö¸¸ PFAS¸¦ ÅëÁ¦µÈ ȯ°æÀ¸·Î ¹æÃâÇÏ´Â µ¥ ÃÖ¼ÒÇÑÀÇ ¿¡³ÊÁö°¡ ÇÊ¿äÇÏ´Ù"°í ¼³¸íÇß´Ù.


¿¬±¸ÁøÀº ½Ä¼ö¿¡¼­ µ¶¼Ò¸¦ Á¦°ÅÇϱâ À§ÇÑ ¹æ¹ýÀ¸·Î ÀÌ »çÁøÀÇ ÀÛÀº ½ºÆùÁöó·³ ¼¿·ê·Î¿À½º ½ºÆùÁöÀÇ ´Ù¾çÇÑ º¯ÇüµéÀ» ½ÃÇèÇÏ°í ÀÖ´Ù.  [»çÁøÁ¦°ø = UArizona(¿¡¹Ð¸® µðÅ©¸¸)]

¿¬±¸ÁøÀº ½Ä¼ö¿¡¼­ µ¶¼Ò¸¦ Á¦°ÅÇϱâ À§ÇÑ ¹æ¹ýÀ¸·Î ÀÌ »çÁøÀÇ ÀÛÀº ½ºÆùÁöó·³ ¼¿·ê·Î¿À½º ½ºÆùÁöÀÇ ´Ù¾çÇÑ º¯ÇüµéÀ» ½ÃÇèÇÏ°í ÀÖ´Ù.  [»çÁøÁ¦°ø = UArizona(¿¡¹Ð¸® µðÅ©¸¸)]


Å« ¹®Á¦¿¡ ´ëÇÑ °æÁ¦Àû Á¢±Ù(An economical approach to a big problem)


°úÇÐÀÚµéÀº Á¾Á¾ ÇÑ ¹ø¿¡ ÇϳªÀÇ ¿À¿° ¹°ÁúÀ» ºÐ¸®ÇÏ¿© Á¦°ÅÇÏ´Â °ÍÀ» ½ÃÇèÇÑ´Ù. ÇÏÁö¸¸ ¿¬±¸½Ç ¹Û¿¡¼­´Â ±×·¸°Ô °£´ÜÇÏÁö ¾Ê´Ù. ¶§¶§·Î "¿µ¿øÇÑ ¿À¿° ¹°Áú"À̶ó°í ºÒ¸®´Â ¼öõ °³ÀÇ PFAS°¡ ÀÖÀ¸¸ç, »ê¾÷Àº ´õ¿í ¹ßÀüÇÏ°í ÀÖ´Ù. ȯ°æº¸È£Ã»ÀÌ Åº¼Ò°¡ 6°³ ÀÌ»óÀÎ Àå¼â PFASÀÇ µÎ °¡Áö À¯ÇüÀ» ±ÔÁ¦Çϱ⠽ÃÀÛÇßÀ» ¶§ ¾÷°è´Â ´Ü¼â PFAS¸¦ °³¹ßÇÏ¿© ´ëÀÀÇß´Ù. ÀϺΠ»ç¶÷µéÀº ´Ü¼â PFAS°¡ ´õ ªÀº ½Ã°£ µ¿¾È ½Åü¿¡ Áö¼ÓµÉ ¼ö ÀÖ´Ù°í ÃßÃøÇÏÁö¸¸ °Ç°­¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇؼ­´Â ¾Ë·ÁÁø ¹Ù°¡ °ÅÀÇ ¾ø´Ù.


¹°¿¡¼­ PFAS È¥ÇÕ¹°À» Á¦°ÅÇÏ·Á¸é ¸ÕÀú ¾î¶² À¯ÇüÀÌ Á¸ÀçÇÏ´ÂÁö °¨ÁöÇØ¾ß ÇÑ´Ù. ¼öÄÝ »ç¹Ù°¡Æ®·´(Suchol Savagatrup) ÇÁ·ÎÁ§Æ® °øµ¿ ¿¬±¸¿øÀÌÀÚ È­ÇÐȯ°æ°øÇÐ Á¶±³¼ö´Â ¸¹Àº Á¾·ùÀÇ PFASÀÇ Á¸À縦 ¼±ÅÃÀûÀ¸·Î °¨ÁöÇÏ´Â Àü±âÈ­ÇÐ ¼¾¼­¸¦ °³¹ßÇÏ°í ÀÖ´Ù.


Ä«¶ó´ÏÄÝ¶ó ±³¼ö´ÂÀÇ ½ºÆùÁö Á¦°Å ÇÁ·Î¼¼½º¿Í ¸¶Âù°¡Áö·Î »ç¹Ù°¡Æ®·´ ±³¼öÀÇ °¨Áö ¹æ¹ýÀº ¸Å¿ì ƯÁ¤ÇÑ ºÐÀÚ¸¦ ²ø¾î´ç±â´Â ¾ãÀº ´Ù°ø¼º ¹°ÁúÀ» Æ÷ÇÔÇÑ´Ù. 


»ç¹Ù°¡Æ®·´ "°¢ ±¸¸ÛÀº ±âº»ÀûÀ¸·Î PFAS ºÐÀÚ¸¦ ¸ÕÀú ³Ö¾î ¸¸µç´Ù"¶ó¸ç, "±×·± ´ÙÀ½ ºÐÀÚ¸¦ Á¦°ÅÇÏ¸é ±¸¸ÛÀÇ ¾ãÀº ÃþÀÌ »ý±â°í °¢ ±¸¸ÛÀº PFAS°¡ µé¾î ¿Àµµ·Ï Ưº°È÷ ¸¸µé¾îÁø´Ù. ÀÌ°ÍÀº ¼±ÅÃÀûÀÎ ÃþÀ̹ǷÎ, ¸¹Àº È­ÇÐÀû °£¼·ÀÌ ÀÖ´Â ÁöÇϼö¿¡ ³ÖÀ¸¸é, ¼¾¼­´Â PFAS ºÐÀÚ¸¸ Æ÷ÂøÇÑ´Ù"°í ¼³¸íÇß´Ù.


¸¶Å© ºê·ç¼Ò(Mark Brusseau) °øµ¿ ¿¬±¸¿ø UArizona ȯ°æ°úÇаú ±³¼ö¿Í PFAS Àü¹®°¡ÀÎ Ä«¶ó´ÏÄÝ¶ó ±³¼ö¿¡ µû¸£¸é ¿À¿° ¹°ÁúÀÇ ÇൿÀ» ¿¹ÃøÇÏ´Â ¼öÇÐÀû ¸ðµ¨À» °³¹ßÇÏ´Â µ¥ ¼ö³âÀ» º¸³Â´Ù. ±×´Â ½ÇÁ¦ ȯ°æ¿¡¼­ Àß ÀÛµ¿ÇÏ´Â ¼¾¼­¿Í ½ºÆÝÁöÀÇ °³¹ßÀ» ¾È³»ÇÏ´Â ¸ðµ¨À» ¸¸µé°í ÀÖ´Ù. Àç´Ï À×±×·¥(Jani Ingram) ³ë´ø ¾Ö¸®Á¶³ª ´ëÇÐÀÇ È­ÇÐ ¹× »ýÈ­ÇÐ ¸®ÀüÆ® ±³¼öÀÌÀÚ °øµ¿ ¿¬±¸¿øÀº ƯÈ÷ ³ª¹ÙÈ£Á· ±¹°¡(Navajo Nation)¿Í °ü·ÃÇÏ¿© ¼öÁú Æò°¡ ¹× °øÁß º¸°Ç ¿µÇâ¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» Á¦°øÇÏ°í ÀÖ´Ù.


±× ¿¬±¸ÆÀÀº ¾Ö¸®Á¶³ªÀÇ ¼¼ °÷(ÇǸ¶ Ä«¿îƼ, ÄÚÄڴϳë Ä«¿îƼ ¹× ³ª¹ÙÈ£ ³×ÀÌ¼Ç À§Ä¡)ÀÇ ¹°À» »ç¿ëÇÏ¿© ±× ¹æ¹ýÀ» Å×½ºÆ®ÇÒ °ÍÀÌ´Ù. TucsonÀº Á¤±³ÇÑ Çϼö ÀçÀÌ¿ë ½Ã½ºÅÛ°ú ¹° Áö¼Ó°¡´É¼º°ú °ü·ÃµÈ ±â¼úÀ» °³¹ßÇÏ´Â UArizona ¹° ¿¡³ÊÁö Áö¼Ó °¡´É ±â¼ú ¼¾ÅÍ(UArizona Water & Energy Sustainable Technology Center) ¶Ç´Â WEST ¼¾ÅÍ(WEST Center)¿Í °°Àº ÀÚ¿øÀ» Àß °®Ãß°í ÀÖ´Ù. ±×·¯³ª ±× ÆÀÀº ÀÌ ¹®Á¦¿Í Áö¿ª»çȸ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ Å« ±Ô¸ð·Î »ìÆ캸°íÀÚ ÇÑ´Ù.


Ä«¶ó´ÏÄÝ¶ó ±³¼ö´Â "°æÁ¦Àû °¨Áö ¹× ó¸®¿Í ¸ðµ¨¸µ°ú °áÇÕÇÏ¿© Áö¼ÓÀûÀÎ °³¼±À» °¡´ÉÇÏ°Ô ÇÏ´Â Àüü·ÐÀû Á¢±Ù ¹æ½ÄÀÌ´Ù"¶ó¸ç, "¾Ö¸®Á¶³ª Àüü, ƯÈ÷ Tucson°ú ÇǸ¶ Ä«¿îƼ¿¡¼­ ¿ì¸®´Â ÀÇ¹Ì ÀÖ´Â ÀÏÀ» ÇÏ°í ÀÌ°ÍÀ» ¾Ë¾Æ³»±â À§ÇØ Á¤¸»·Î ¾ÕÀå¼­°í ÀÖ´Ù"¶ó°í ÀüÇß´Ù.


[¿ø¹®º¸±â]


$1.4M effort develops reusable sponges to soak up harmful chemicals from water

A team of researchers from the University of Arizona and Northern Arizona University is creating a regenerable method for removing stubborn toxins from drinking water – starting with store-bought sponges.



University of Arizona and Northern Arizona University researchers are developing specialized, reusable sponges to remove a group of chemicals known as PFAS from water. The team, led by chemical and environmental engineering assistant professor Vicky Karanikola, has received $1.487 million from the Arizona Board of Regents, with $1.24 million allocated to UArizona.


PFAS is an abbreviation for perfluoroalkyl and polyfluoroalkyl substances, which are long-lasting manufactured chemicals that are resistant to water, heat and grease. They have been used for decades in products such as makeup, food packaging, nonstick pans, raincoats, carpeting and firefighting foam. But scientists now know exposure to PFAS can be harmful to humans and animals. Health effects include decreased fertility, developmental delays in children and increased risk of some forms of cancer.


The durability of PFAS – the same quality that makes them useful for many applications – means it is very difficult to remove them from the environment, and the chemicals have spread into water sources in areas throughout the world, including Tucson. Removal is an ongoing process. For instance, in a separate effort, the Central Tucson PFAS Project was launched in early 2022 to remove PFAS pollution from groundwater near Davis-Monthan Air Force Base.


"PFAS contamination is a critical issue in Arizona and beyond, and we are so proud that this team, largely made up of early-career faculty members, is leading this effort," said University of Arizona President Robert C. Robbins. "By creating a more sustainable method for PFAS detection and removal, this team aims to make water safer for communities around Arizona."


The first step in this million-dollar effort: Buy off-the-shelf materials from the store.


Making toxin cleanup stick and unstick


Many sponges are made of cellulose, an abundant organic compound found in plants and used to make materials such as paper and textiles. To draw PFAS out of water, engineers need to use a material that can adsorb PFAS – or, more simply, a material that PFAS will stick to. This part is easy, as PFAS stick to many materials, including cellulose, naturally. The team even has to use polypropylene containers for all of its experiments because PFAS stick to glass.


While simple cellulose sponges are good for initial study of factors such as optimal pore size and density, sponges being developed for removal of PFAS are far more complex. They will soak up PFAS-contaminated water, then squeeze out clean water while the PFAS stay stuck. Then, an extraction solution will remove the PFAS from the sponges so they can be used again.


One common method for removing PFAS from water uses granulated activated carbon, or GAC, another material to which PFAS stick quite well. A little too well, in fact. The tricky part is the unsticking. Getting the PFAS off the GAC so the carbon materials can be reused for another round of removal is expensive and difficult.


"The amount of energy you need to release them from GAC is huge," Karanikola said. "The innovation of this project is that we're focusing on a regenerable method: We want to break that barrier of just using something once and throwing it away. We are trying to find the sweet spot for absorbing it just enough to hold, but that will take the minimum amount of energy to release the PFAS into a controlled environment."


An economical approach to a big problem


Scientists often isolate and test removal of one contaminant at a time. Outside of the lab, things aren't that simple. There are thousands of PFAS, sometimes called "forever pollutants," and industry is developing more. When the Environmental Protection Agency began regulating two types of long-chain PFAS, which have more than six carbons, industry responded by developing short-chain PFAS. While some speculate that short-chain PFAS may persist in the body for a shorter time, little is known about their effects on health.


To remove a cocktail of PFAS from water, researchers first must detect what types are present. Suchol Savagatrup, project co-investigator and assistant professor of chemical and environmental engineering, is developing electrochemical sensors to selectively detect the presence of many kinds of PFAS.


Like Karanikola's sponge removal process, Savagatrup's sensing method incorporates a thin layer of porous material that attracts very specific molecules. It's like a high-tech version of the game where children match different-shaped pegs to the correct holes.


"Each pore is made essentially by putting molecules of PFAS in there first," Savagatrup explained. "Then, when we remove the molecules, we have a thin layer of holes, and each hole is made specifically for PFAS to come in. It's a selective layer, so if we put it in groundwater that has a bunch of chemical interferences in it, the sensor only picks up the PFAS molecules."


Co-investigator Mark Brusseau, a UArizona professor of environmental science and – according to Karanikola – a "PFAS guru," has spent years developing mathematical models to predict the behaviors of contaminants. He is creating models to guide the development of sensors and sponges that work well in real-world environments. Co-investigator Jani Ingram, a Regents Professor of chemistry and biochemistry at Northern Arizona University, is providing expertise on water quality assessment and public health impacts, particularly with regard to the Navajo Nation.


The team will put its methods to the test with water from three sources in Arizona: Pima County, Coconino County and locations on the Navajo Nation. Tucson is well equipped with resources like sophisticated wastewater reclamation systems and the UArizona Water & Energy Sustainable Technology Center, or WEST Center, which develops technologies related to water sustainability. But the team wants to look at the problem, and its impact on communities, on a larger scale.


"It's a holistic approach that combines economical detection and treatment with modeling to allow for continuous improvement," Karanikola said. "In Arizona overall, and especially Tucson and Pima County, we are really on the forefront of trying to do something meaningful and trying to figure this out."


[Ãâó = University of Arizona(https://news.arizona.edu/story/14m-effort-develops-reusable-sponges-soak-harmful-chemicals-water) /2022³â 8¿ù 17ÀÏ]

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] ¹Ì ¿¬¹æ±¹Åä°³¹ß±¹, ¹° ¸ðµ¨¸µ ¹× ¿¹ÃøÀ» °³¼± À§ÇØ º¸Á¶±Ý 120¸¸ ´Þ·¯ Áö¿ø
´ÙÀ½±Û [Çѱ¹] µÎ»ê¿¡³Êºô¸®Æ¼, µðÁöÅÐ »ç¾÷ È­°øÇ÷£Æ® ºÐ¾ß±îÁö ³ÐÈù´Ù
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.