Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2023] [¹Ì±¹] ¾Æ¸£°ï±¹¸³¿¬±¸¼Ò, ¼öÁú¿À¿° ¹æÁö À§ÇÑ ¼¾¼­ ±â¼ú ¿¬±¸
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2023.08.14 Á¶È¸¼ö 490
ÆÄÀÏ÷ºÎ

[¹Ì±¹] ¾Æ¸£°ï±¹¸³¿¬±¸¼Ò, ¼öÁú¿À¿° ¹æÁö À§ÇÑ ¼¾¼­ ±â¼ú ¿¬±¸

»õ·Î¿î ÀüÀÚ¼¾¼­, ¼öÁß µ¶¼Ò ¹× ±âŸ ¿ä¼Ò ÃøÁ¤¡¦´ë·®»ý»ê Àü °áÇÔ ÀÖ´Â ÀüÀÚ¼¾¼­ ¼±º° ¹æ¹ý Á¦½Ã

¹Ì ¿¡³ÊÁöºÎ »êÇÏ ¾Æ¸£°ï ±¹¸³¿¬±¸¼Ò¡¤½ÃÄ«°í´ëÇС¤À§½ºÄܽŴëÇÐ °øµ¿ ¿¬±¸¡¦¡º³×ÀÌó Ä¿¹Â´ÏÄÉÀ̼ÇÁî(Nature Communications)¡»¿¡ ¹ßÇ¥



±×·¡ÇÉ ±â¹Ý ³ª³ëÃþ°ú µÎ °³ÀÇ Àü±ØÀÌ ºÎÂøµÈ ¹°¼¾¼­ ½Ç¹° ¿¹»óµµ(rendering). ´Ù¾çÇÑ ÁÖÆļö(Æĵ¿¼±)¿¡¼­ ±³·ù Àü¾ÐÀº °íÇ°Áú ¼¾¼­¸¦ ½Å¼ÓÇÏ°í, ºñÆı«ÀûÀ¸·Î ¼±º°ÇÑ´Ù [»çÁøÃâó(Photo source) = Argonne National Laboratory]

 

Àü ¼¼°èÀûÀ¸·Î ¹° À§±â°¡ ¹ß»ýÇÏ°í ÀÖ´Ù. ÀÌ´Â ±ú²ýÇÑ ¹° °ø±ÞÀÇ °¨¼Ò¸¸ÀÇ ¹®Á¦´Â ¾Æ´Ï´Ù. ¿À¿°µÈ ½Ä¼ö´Â Àü ¼¼°èÀûÀ¸·Î ¼ö¾ï ¸íÀÇ »ç¶÷µéÀ» ¹ÚÅ׸®¾Æ, Á߱ݼÓ, »ìÃæÁ¦ ¹× Äڷγª ¹ÙÀÌ·¯½º¿Í °°Àº µ¶¼Ò¿¡ ³ëÃâ½ÃŲ´Ù. ±× °á°ú °øÁß º¸°ÇÀ» À§ÇùÇÏ°í, ½É°¢ÇÑ Áúº´À» À¯¹ßÇÑ´Ù.


¹Ì±¹ ¿¡³ÊÁöºÎÀÇ ¾Æ¸£°ï ±¹¸³¿¬±¸¼Ò¿Í ½ÃÄ«°í ´ëÇÐÀÇ ÇÁ¸®Ã÷Ä¿ ºÐÀÚ°øÇаú(Pritzker School of Molecular Engineering at the University of Chicago), ¹Ð¿öÅ° ÁÖÀÇ À§½ºÄܽŠ´ëÇб³( University of Wisconsin — Milwaukee)´Â È帣´Â ¼öµ¾¹°¿¡¼­ ³³, ¼öÀº, ´ëÀå±ÕÀ» µ¿½Ã¿¡ °¨ÁöÇÒ ¼ö ÀÖ´Â ¼¾¼­ÀÇ ´ë·® Á¦Á¶¹æ¹ýÀ» ¿¬±¸Çß´Ù. ÀÌ ¼¾¼­´Â ¿À¿°¿¡ ´ëÇØ »çÀü °æ°íÇÔÀ¸·Î½á °øÁߺ¸°ÇÀ» º¸È£ÇÑ´Ù.


ÇÏÀÌÈÄÀÌ Çª(Haihui Pu) ÇÁ¸®Ã÷Ä¿ ºÐÀÚ°øÇаú·Î °øµ¿ ÀÓ¸íµÈ ¾Æ¸£°ïÀÇ °úÇÐÀÚ´Â ¡°¹° ¼Ó ¿À¿° ¹°ÁúÀ» ÃøÁ¤ÇÏ´Â ÀüÅëÀûÀÎ ¹æ½ÄÀÇ ¼¾¼­´Â ½Å·Ú¼º ¹®Á¦°¡ ÀÖÀ»»Ó¸¸ ¾Æ´Ï¶ó °áÇÔÀÌ ÀÖ´Â ÀåÄ¡¸¦ °¨ÁöÇÒ ¼ö ¾ø¾ú´Ù¡±¶ó°í ¸»Çß´Ù.  ¹Ý¸é »õ·Î¿î ¼¾¼­´Â À̸¦ °³¼±Çß´Ù.


¼¾¼­ÀÇ Á߽ɿ¡´Â ½Ç¸®ÄÜ ±âÆÇ(silicon substrate)À§¿¡ ÄÚÆÃµÈ 1 ³ª³ë¹ÌÅÍ µÎ²²ÀÇ ÃþÀÌ ÀÖ´Ù. ÀÌ ÃþÀº ±×·¡ÇÉ(graphene)ÀÇ ÇÑ ÇüÅ·Πź¼Ò¿Í »ê¼Ò ¿øÀÚ·Î ÀÌ·ç¾îÁ³´Ù. ÀÌ ±×·¡ÇÉ ¹°ÁúÀº ÄÄÇ»ÅÍ Ä¨¿¡¼­ ¹ß°ßµÇ´Â ¹ÝµµÃ¼¿Í ºñ½ÁÇÑ ¿ªÇÒÀ» ¼öÇàÇÑ´Ù. 


±×·¡ÇÉ Ç¥¸é¿¡´Â ±Ý Àü±ØÀ» °¢ÀÎÇÏ°í, ³ª³ë¹ÌÅÍ µÎ²²ÀÇ »êÈ­¾Ë·ç¹Ì´½À¸·Î Àý¿¬ÃþÀ» ¸¸µç´Ù. °¢°¢ÀÇ ¼¾¼­´Â ³³, ¼öÀº, ´ëÀå±Õ ¼¼ °¡Áö µ¶¼Ò Áß Çϳª¸¦ °¨ÁöÇϵµ·Ï ¸ÂÃãÈ­ µÅ ÀÖ´Ù.


ÀÌ ¼¾¼­¸¦ ´ë·® »ý»êÇÏ´Â µ¥ ÀÖ¾î ÁÖ¿ä °úÁ¦ Áß Çϳª´Â °áÇÔÀ» Æò°¡ÇÏ´Â °ÍÀÌ´Ù. ±Øµµ·Î ¾ãÀº Àý¿¬Ãþ¿¡´Â ¿øÇÏÁö ¾Ê´Â °ø±Ø·ü(porosity)ÀÌ Çü¼ºµÉ ¼ö ÀÖ´Ù. ÀÌ °ø±Ø·üÀº ÇϺΠ±×·¡ÇÉ ÃþÀÇ ÀüÀÚ°¡ »óºÎ Àý¿¬ÃþÀ¸·Î ºüÁ®³ª°¡°Ô ¸¸µé¾î Àý¿¬Ã¼ÀÇ È¿°ú¸¦ ¼Õ»ó½ÃÅ°°í ½Å·ÚÇÒ ¼ö ¾ø´Â °á°ú°ªÀ» ÃÊ·¡ÇÑ´Ù.


¡º³×ÀÌó Ä¿¹Â´ÏÄÉÀ̼ÇÁî(Nature Communications)¡»¿¡ ½Ç¸° ¿¬±¸ÆÀÀÇ ÃÖ±Ù ³í¹®¿¡´Â ´ë·® »ý»êÀ» Çϱâ Àü¿¡ °áÇÔÀÌ ÀÖ´Â ÀåÄ¡¸¦ ½Äº°ÇÏ´Â ¼±º°¹æ¹ýÀÌ ¼³¸íµÅ ÀÖ´Ù. ¼¾¼­´Â ¹°¼Ó¿¡¼­ Àý¿¬ÃþÀÇ Àü±â ¹ÝÀÀÀ» ÃøÁ¤ÇÑ´Ù.


ÇÙ½ÉÀº ÀÌ ¼±º°¹æ½ÄÀÌ ¼¾¼­¸¦ ¼Õ»ó½ÃÅ°Áö ¾Ê´Â´Ù´Â °ÍÀÌ´Ù. ÀÌ ±â¼úÀ» »ç¿ëÇØ ¿¬±¸ÆÀÀº Àý¿¬ÃþÀÇ ±¸Á¶Àû °áÇÔÀ» ½Äº°Çß´Ù. ±× ÈÄ °áÇÔÀÌ ÀÖ´Â ÀåÄ¡¸¦ ½±°Ô °¨ÁöÇÒ ¼ö ÀÖ´Â ±âÁØÀ» È®¸³Çß´Ù.


ÀÌ ±â¼úÀÇ È¿°ú¸¦ ÀÔÁõÇϱâ À§ÇØ, ¿¬±¸ÆÀÀº È帣´Â ¼öµ¾¹°¿¡¼­ ³³, ¼öÀº ¹× ´ëÀå±ÕÀ» µ¿½Ã¿¡ °¨ÁöÇÒ ¼ö ÀÖ´Â 3°³ÀÇ ¼¾¼­ ¹è¿­À» Æò°¡Çß´Ù. ±â°è ÇнÀ ¾Ë°í¸®ÁòÀ» »ç¿ëÇØ °á°ú¸¦ ºÐ¼®ÇÔÀ¸·Î½á ¹æÇØ ¿ä¼Ò°¡ ÀÖ´Â °æ¿ì¿¡µµ µ¶¼Ò ¼öÁØÀ» 10¾ï ºÐÀÇ 1 ¼öÁرîÁö Á¤·®È­ÇÒ ¼ö ÀÖ¾ú´Ù. 


þÁØÈ«(Junhong Chen) ¾Æ¸£°ïÀÇ ¼ö¼® ¹° Àü·«°¡ÀÌÀÚ ÇÁ¸®Ã÷Ä¿ ºÐÀÚ°øÇаú ±³¼ö´Â ¡°ÀÌ ¼¾¼­ÀÇ ÀåÁ¡Àº ¼öµ¾¹°»Ó¸¸ ¾Æ´Ï¶ó ¾î¶² ÇüÅÂÀÇ ¹°¿¡µµ Àû¿ëÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÌ´Ù¡±¶ó°í ¸»Çß´Ù. ¶ÇÇÑ ¡°°¢°¢ ´Ù¸¥ ±¸¼º ¿ä¼Ò¸¦ °¨ÁöÇÒ ¼ö ÀÖµµ·Ï ¸ÂÃãÈ­µÈ ¼¾¼­¸¦ 3°³, 30°³ ¶Ç´Â 300°³¾¿ °áÇÕÇÒ ¼ö ÀÖ´Ù¡±°í ¸»Çß´Ù.


±×´Â ¡°Á߱ݼӰú ¹ÚÅ׸®¾Æ»Ó¸¸ ¾Æ´Ï¶ó ÀǾàÇ°, »ìÃæÁ¦, Äڷγª¹ÙÀÌ·¯½º, ¹°, ´ç ¹× Æú¸®Ç÷ç¿À·Î¾Ëų ¹°ÁúÀÇ ÀϹÝÀûÀÎ ¿À¿° ¹°ÁúÀ» °¨ÁöÇÒ ¼ö ÀÖ´Ù¡±¸ç ¡°¹èÅ͸®¿ë ÄÚ¹ßÆ®, ½Ä¹°°ú µ¿¹°ÀÇ ¿µ¾ç¼ÒÀÎ Áú¼Ò ¹× Àεµ Æ÷Ç﵃ ¼ö ÀÖ´Ù¡±°í ¸»Çß´Ù.


¹®Á¦¿ä¼Ò°¡ Á¦°ÅµÇ¸é ¼¾¼­¸¦ »ç¿ëÇØ ¹°ÀÇ Ã»°áµµ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Ù. ±×ÈÄ ½Ä¼ö, ³ó¾÷ ¹× °ü°³, ÁöÇϼö º¸Ãæ ¹× »ê¾÷ °øÁ¤À» Æ÷ÇÔÇÑ ¹°ÀÇ ¾ÈÀüÇÑ Àç»ç¿ëÀ» ¾È³»ÇÒ ¼ö ÀÖ´Ù.


[¿ø¹®º¸±â]


Pivotal discovery in sensor technology to combat water contamination and mor

New screening method eliminates faulty electronic sensors for measuring toxins and other elements in water


 

There is a global water crisis, and it is not only about the dwindling supply of clean water. Contaminated drinking water exposes hundreds of millions of people worldwide to toxins, such as bacteria, heavy metals, pesticides and coronaviruses. This contamination imperils public health and can cause serious illnesses.


A team of researchers from the U.S. Department of Energy¡¯s Argonne National Laboratory, along with the Pritzker School of Molecular Engineering at the University of Chicago and the University of Wisconsin — Milwaukee, has devised a pathway for the mass manufacture of sensors able to simultaneously detect lead, mercury and E. coli. in flowing tap water. The team¡¯s innovation promises to help safeguard public health by providing early warning for contamination.


¡°Traditionally, sensors designed to measure contaminants in water have suffered from reliability issues and the inability to detect faulty devices,¡± said Argonne scientist Haihui Pu, who holds a joint appointment with UChicago¡¯s Pritzker Molecular Engineering. ¡°Improved sensors could avert health crises.¡±


At the core of these sensors lies a one-nanometer-thick layer of carbon and oxygen atoms, a form of graphene, which is coated on a silicon substrate. This graphene material serves a similar purpose to the semiconductors found in computer chips. Gold electrodes are then imprinted onto the graphene surface, followed by a nanometer-thick insulating layer of aluminum oxide. Each sensor is tailored to detect one of the three toxins: lead, mercury or E. coli.


One of the major challenges in mass manufacturing these sensors has been assessing their quality. Tiny areas of undesired porosity can form in the ultra-thin insulating layer. This porosity allows electrons from the bottom graphene layer to escape into the top insulating layer. This leakage compromises its effectiveness as an insulator and results in unreliable sensor responses.


The team¡¯s recent publication in Nature Communications describes a screening method to identify defective devices before mass production. The method involves measuring the electrical response of the insulating layer while the sensor is submerged in water. Key is that the screening does not damage the sensor. By employing this technique, the team identified structural defects in the insulating layers. They were then able to establish criteria to easily detect faulty devices.


To demonstrate the efficacy of their approach, the team evaluated a three-sensor array able to simultaneously detect lead, mercury and E. coli in flowing tap water. Using machine learning algorithms to analyze the results, they were able to quantify toxin levels down to the parts per billion, even in the presence of interfering elements.


¡°The beauty of the sensors is that you can apply them in any form of water, not just tap water,¡± said Junhong Chen, Argonne¡¯s lead water strategist and Crown Family Professor at Pritzker Molecular Engineering. ¡°What¡¯s more, you can combine three, thirty or three hundred sensors, with each tailored to detect different constituents.¡± These include not only heavy metals and bacteria, but pharmaceuticals, pesticides, coronaviruses and a common contaminant in water, per- and polyfluoroalkyl substances. They might also include critical resources, such as cobalt for batteries and nitrogen and phosphorus as nutrients for plants and animals.


Once problematic or valuable elements are identified and removed, the sensors can be used to assess the cleanliness of treated water. The results can guide the safe reuse of the water, including potable use, agriculture and irrigation, groundwater replenishment and industrial processes.


[Ãâó = Argonne National Laboratory(https://www.anl.gov/article/pivotal-discovery-in-sensor-technology-to-combat-water-contamination-and-more) / 2023³â 8¿ù 10ÀÏ)]

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] Á¦ÀÌÄß½º, Ķ¸®Æ÷´Ï¾Æ IEUA Áö¿ª ÀçÈ°¿ë ¹° ÇÁ·Î±×·¥ È®Àå °ü¸®
´ÙÀ½±Û [¹Ì±¹] EPA, ºø¹° ¹× Çϼöµµ ÀÎÇÁ¶ó °³¼± À§ÇÑ º¸Á¶±Ý 5õ¸¸´Þ·¯ ¹ßÇ¥
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.