Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2024] [¹Ì±¹] Ä÷³ºñ¾Æ´ë ¿¬±¸ÆÀ, ¡°½ÃÆÇ »ý¼ö¿¡ ¼ö½Ê¸¸°³ÀÇ ÀÛÀº Çöó½ºÆ½ Á¶°¢ µé¾î ÀÖ´Ù¡±
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2024.01.11 Á¶È¸¼ö 582
ÆÄÀÏ÷ºÎ

[¹Ì±¹] ºñ¾Æ´ë¿¡ µû¸£¸é, ¡°½ÃÆÇ »ý¼ö¿¡ ¶Õ°í ÀÛÀº Çöó½ºÆ½ Á¶°¢µéÀÌ µé¾îÀÖ½À´Ï´Ù¡±

»õ·Î¿î Ŭ¸³ ±â¼úÀ» ÀÌ¿ëÇÏ¿© Á¶»çÇÑ °á°ú, »ý¼ö 1L¿¡ 7Á¾·ùÀÇ Çöó½ºÆ½ ÀÔÀÚ 24¸¸°³ ¹ß°ß¡¦ÀÌ °¡¿îµ¥ ³ª³ëÇöó½ºÆ½ÀÌ 90% ´ÞÇØ

ºñ¾Æ´ë·Î Àü´ÞµÇÁö ¾Ê°í, ½ÇÁ¦·Î¡¤¼¼Æ÷ ¹× ³ú°¡ µÉ ¼ö ÀÖ´Â ³ª³ëÇöó½ºÆ½ÀÇ ¹ß°ßµÇÁö ¾ÊÀº ¼¼°è¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ¿¬±¸ Á¶»ç 

¹Ì±¹¼­ ½ÃÆǵǴ »ý¼ö 3°³ Á¦Ç° Á¶»ç¡¦ ¹Ì±¹ ±¹¸³°úÇпøȸº¸(PNS) Àú³ÎÀÌ ÃÖ±ÙÈ£¿¡ °ÔÀçµË´Ï´Ù



¹Ì±¹ ĸºñ¾Æ ´ëÇРȸº¸´Â ¹Ì±¹ ±¹¸³°úÇпø ȸº¸(PNAS) ½Å±ÔÈ£¿¡ ½Ç ¿¬±¸¸° ³í¹®¿¡¼­, »ý¼ö 1L¿¡¼­ 7Á¾·ùÀÇ Çöó½ºÆ½ ÀÔÀÚ 24¸¸ ±ºµ¥ Á¦¿ÜÇÏ°í ÀÌ »ì¾Æ³²Àº ³ª³ë Çöó½ºÆ½ÀÌ 90%¿¡ ´Þ¿¡ ÀÖ½À´Ï´Ù.  [»çÁøÃâó(»çÁø Ãâó) = ºñ¾Æ´ëÇб³(Columbia University)]

¹Ì±¹ ĸºñ¾Æ ´ëÇРȸº¸´Â ¹Ì±¹ ±¹¸³°úÇпø ȸº¸(PNAS) ½Å±ÔÈ£¿¡ ½Ç ¿¬±¸¸° ³í¹®¿¡¼­, »ý¼ö 1L¿¡¼­ 7Á¾·ùÀÇ Çöó½ºÆ½ ÀÔÀÚ 24¸¸ ±ºµ¥ Á¦¿ÜÇÏ°í ÀÌ »ì¾Æ³²Àº ³ª³ë Çöó½ºÆ½ÀÌ 90%¿¡ ´Þ¿¡ ÀÖ½À´Ï´Ù. [»çÁøÃâó(»çÁø Ãâó) = ºñ¾Æ´ëÇб³(Columbia University)]


ÃÖ±Ù ¸î ³â µ¿¾È ¼ö½ÅµÇ´Â Çöó½ºÆ½(¸¶ÀÌÅ©·ÎÇöó½ºÆ½)À¸·Î ÈíÂø ÀÛÀº ÀÔÀÚ°¡ ±ØÁö¹æÀÇ ¾óÀ½¿¡ ½×¿©, ½Ä¼ö, Ŭ·´¿¡±îÁö ¸ðµç °÷¿¡¼­ ±âº»ÀûÀ¸·Î´Â À۾Ƽ­ ±¦Âú½À´Ï´Ù.


Çöó½ºÆ½ÀÌ Á¡Á¡ ´õ ÀÛÀº Á¶°¢À¸·Î ºÐÇØµÉ ¶§ Çü¼ºµÇ´Â ÀÔÀÚ´Â Àΰ£°ú ´Ù¸¥ ´ºÁú·£µåüµé¿¡ ÀÇÇØ ¼öÇàµÇ°í, Á¦¿ÜÀÎ °Ç°­ ¹× º¸ÇàÀÚ ¿µÇâ¿¡ º°µµ·Î ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ´Ù´Â °Í¿¡ ´ëÇØ ¼³¸íÇÕ´Ï´Ù. 


±×°÷¿¡¼­ ¹Ì±¹¿¡¼­ ºñ¾Æ´ëÇб³(Columbia University)´Â PETº´ µî °¢ÀÚÀÇ ¿ë±â¿¡ ´ã°Ü ÀÖ´Â »ý¸í¼ö ¾È¿¡´Â Â÷¼¼´ëÇöó½ºÆ½°ú ³ª³ëÇöó½ºÆ½(nanoplastic)ÀÇ ¼ö·®À» Á¶»çÇß´Ù. Á¶»ç °á°ú, °¢ ÄÁÅ×À̳ʿ¡´Â ¼ö¸¸ Á¸ÀçÇÏ´Â °ÍÀ¸·Î Á¸ÀçÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.


ÀÌ Á¡ÀÌ °³¼±µÈ ±â¼úÀ» ¿ÏÀüÈ÷ »ç¿ëÇÏ´Â »õ·Î¿î Çöó½ºÆ½ ¼¼°è, Áï Àß ¾Ë·ÁÁöÁö ¾ÊÀº ³ª³ëÇöó½ºÆ½ÀÇ ¿µ¿ª¿¡¼­ Á¶»çÇÑ °á°ú, ÈξÀ ´õ Á¦°ÅµÈ ÈÄÇöó½ºÆ½ÀÌ ¸¹ÀÌ ³²¾ÆÀÖ´Â °ÍÀ» ¹ß°ßÇÏ´Â °ÍÀÔ´Ï´Ù.


Ä÷³ºñ¾Æ´ë ¿¬±¸ÆÀµéÀº óÀ½À¸·Î ÆäÆ®(PET)º´¿¡ ´ã±ä »ý¼ö¿¡¼­ ÀÌ·¯ÇÑ ¹Ì¼¼ÇÑ ÀÔÀÚµéÀ» ¼¼°í È®ÀÎÇß´Ù. ¿¬±¸ÆÀµéÀº Æò±ÕÀûÀ¸·Î 1¸®ÅÍ(L)¿¡ ¾à 24¸¸ °³ÀÇ °¨Áö °¡´ÉÇÑ Çöó½ºÆ½ Á¶°¢ÀÌ Æ÷ÇԵǾî ÀÖ´Ù´Â »ç½ÇÀ» ¹ß°ßÇߴµ¥, ÀÌ´Â ÁÖ·Î ´õ Å« Å©±â¸¦ ±âÁØÀ¸·Î ÇÑ ÀÌÀü ÃßÁ¤Ä¡º¸´Ù 10¹è¿¡¼­ 100¹è ´õ ¸¹Àº ¾çÀ̾ú´Ù.


ÀÌ ¿¬±¸´Â ¹Ì±¹ ±¹¸³°úÇпøȸº¸(Proceedings of the National Academy of Sciences, PNS) Àú³Î¿¡ ÃÖ±ÙÈ£ °ÔÀçµÇ¾ú´Ù.


³ª³ëÇöó½ºÆ½Àº ³Ê¹« À۾Ƽ­ ¹Ì¼¼Çöó½ºÆ½°ú ´Þ¸® ÀÎüÀÇ Àå°ú Æó¸¦ Åë°úÇØ Á÷Á¢ Ç÷¾× ¼ÓÀ¸·Î Á÷Á¢ µé¾î°¡ ½ÉÀå°ú ³ú¸¦ Æ÷ÇÔÇÑ Àå±â·Î À̵¿ÇÒ ¼ö ÀÖÀ» Á¤µµ·Î ¸Å¿ì ÀÛ´Ù.


ÀÌµé ¹°ÁúÀº °¢°¢ÀÇ ¼¼Æ÷·Î ħÀÔÇÏ¿© ŹÝÀ» ÅëÇØ Å¾ÆÀÇ ¸öÀ¸·Î µé¾î°¥ ¼ö ÀÖ´Ù. ÀÇÇÐÀÚµéÀº ´Ù¾çÇÑ »ý¹°ÇÐÀû ü°è¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ¿µÇâÀ» ¿¬±¸Çϱâ À§ÇØ °æÀïÇÏ°í ÀÖ´Ù.


Ä÷³ºñ¾Æ ±âÈÄÇб³(Columbia Climate School)ÀÇ ¶ó¸óÆ®-µµÇãƼ(Lamont-Doherty) Áö±¸°üÃø¼ÒÀÇ È¯°æÈ­ÇÐÀÚÀÌÀÚ À̹ø ¿¬±¸³í¹®ÀÇ °øµ¿ ÀúÀÚÀÎ º£ÀÌÀÜ ¿º(Beizhan Yan) ±³¼ö´Â ¡°ÀÌÀü¿¡´Â ÀÌ°÷ÀÌ ¹ÌÁöÀÇ ¾îµÎ¿î Áö¿ªÀ̾ú´Ù. µ¶¼º ¿¬±¸´Â ´ÜÁö °Å±â¿¡ ¹«¾ùÀÌ ÀÖ´ÂÁö ÃßÃøÇÏ´Â °ÍÀ̾ú´Ù¡±¶ó¸é¼­ ¡°ÀÌ°ÍÀº ¿ì¸®¿¡°Ô ÀÌÀü¿¡ ³ëÃâµÇÁö ¾Ê¾Ò´ø ¼¼°è¸¦ µé¿©´Ùº¼ ¼ö Àִ âÀ» ¿­¾îÁش١±°í ¸»Çß´Ù.


»õ·Î¿î µµ±¸ ±â¼ú¿¡ ÀÇÇØ Æú¸®½ºÆ¼·» Çöó½ºÆ½ÀÇ ÀÛÀº ÀÔÀÚ.  °¡·Î 200³ª³ë¹ÌÅÍ, Áï ¹ÌÅÍ´ç 2õ¾ïºÐÀÇ 1¿¡ ÇØ´çÇÕ´Ï´Ù.  [»çÁøÃâó(»çÁø Ãâó) = ºñ¾Æ´ëÇб³(Columbia University)]

»õ·Î¿î Çö¹Ì°æ ±â¼ú¿¡ ÀÇÇØ À̹Ì¡µÈ Æú¸®½ºÆ¼·» Çöó½ºÆ½ÀÇ ÀÛÀº ÀÔÀÚ. °¡·Î 200³ª³ë¹ÌÅÍ, Áï ¹ÌÅÍ´ç 2õ ¾ïºÐÀÇ 1¿¡ ÇØ´çÇÑ´Ù. [»çÁøÃâó(Photo source) = Ä÷³ºñ¾Æ´ëÇб³(Columbia University)]

 

Àü¼¼°è Çöó½ºÆ½ »ý»ê·®Àº ¿¬°£ 4¾ï ¹ÌÅÍÅæ(metric ton, 1M/T´Â 1kgÀÇ 1õ ¹è)¿¡ À°¹ÚÇÏ°í ÀÖ´Ù. ¸Å³â 3õ¸¸ Åæ ÀÌ»óÀÌ ¹°À̳ª ¶¥¿¡ ¹ö·ÁÁö°í ÀÖÀ¸¸ç, ÇÕ¼º¼¶À¯¸¦ ºñ·ÔÇÑ Çöó½ºÆ½À¸·Î ¸¸µç ¸¹Àº Á¦Ç°Àº »ç¿ë Áß¿¡µµ ÀÔÀÚ¸¦ ¹èÃâÇÑ´Ù.


õ¿¬ À¯±â¹°°ú ´Þ¸® ´ëºÎºÐÀÇ Çöó½ºÆ½Àº ºñ±³Àû ¾ç¼º¹°Áú·Î ºÐÇصÇÁö ¾Ê´Â´Ù. ±×µéÀº ´Ü¼øÈ÷ µ¿ÀÏÇÑ È­ÇÐÀû Á¶¼ºÀ» Áö´Ñ Á¡Á¡ ´õ ÀÛÀº ÀÔÀÚ·Î ³ª´©°í ÀçºÐ¹èÇÑ´Ù. ´ÜÀÏ ºÐÀÚ¸¦ ³Ñ¾î ¾ó¸¶³ª ÀÛ¾ÆÁú ¼ö ÀÖ´ÂÁö¿¡ ´ëÇÑ ÀÌ·ÐÀû ÇÑ°è´Â ¾ø´Ù.


¹Ì¼¼Çöó½ºÆ½Àº 5mm(1/4ÀÎÄ¡ ¹Ì¸¸)ºÎÅÍ 1§­(¸¶ÀÌÅ©·Î¹ÌÅÍ. 1§­´Â 100¸¸ºÐÀÇ 1£í, ¶Ç´Â 1/2¸¸5õ ÀÎÄ¡)±îÁöÀÇ Á¶°¢À¸·Î Á¤ÀǵȴÙ(»ç¶÷ ¸Ó¸®Ä«¶ôÀÇ Áö¸§Àº ¾à 70§­). 1§­ ¹Ì¸¸ÀÇ ÀÔÀÚÀÎ ³ª³ëÇöó½ºÆ½Àº 10¾ïºÐÀÇ 1£í ´ÜÀ§·Î ÃøÁ¤µÈ´Ù.


»ý¼ö¿¡ µé¾î ÀÖ´Â Çöó½ºÆ½Àº 2018³â ¿¬±¸¿¡¼­ L´ç Æò±Õ 325°³ÀÇ ÀÔÀÚ°¡ ¹ß°ßµÈ ÀÌÈÄ Å©°Ô ´ëÁßÀÇ °ü½É»ç°¡ µÇ¾ú´Ù. ÀÌÈÄ ¿¬±¸¿¡¼­´Â ±× ¼ö¸¦ ¸î ¹è·Î ´Ã·È´Ù. °úÇÐÀÚµéÀº Áö±Ý±îÁö °è»êÇÑ °Íº¸´Ù ´õ ¸¹Àº °ÍÀÌ ÀÖÀ» °ÍÀ̶ó°í ÀǽÉÇßÁö¸¸ ÁÁÀº ÃßÁ¤Ä¡´Â ³ª³ë ¼¼°èÀÇ °æ°èÀÎ 1¸¶ÀÌÅ©·Î¹ÌÅÍ ¹Ì¸¸ÀÇ Å©±â¿¡¼­ ¸ØÃè´Ù.


ÀÌ »õ·Î¿î ¿¬±¸ÀÇ ÁÖ ÀúÀÚÀÌÀÚ Ä÷³ºñ¾Æ´ë ´ëÇпø»ýÀÎ ³ªÀ̽ŠŰ¾È(Naixin Qian)Àº ¡°»ç¶÷µéÀº ³ª³ë ÀÔÀÚ¸¦ º¼ ¼ö ÀÖ´Â ¹æ¹ýµéÀ» °³¹ßÇßÁö¸¸, ±×µéÀÌ ¹«¾ùÀ» º¸°í ÀÖ´ÂÁö ¾ËÁö ¸ôÇß´Ù¡±°í ÀÌ ¸»Çß´Ù. 


³ªÀ̽ŠŰ¾ÈÀº ¡°ÀÌÀü ¿¬±¸¿¡¼­ ³ª³ë Áú·®¿¡ ´ëÇÑ ´ë·® ÃßÁ¤Ä¡¸¦ Á¦°øÇÒ ¼ö ÀÖ¾úÁö¸¸ ´ëºÎºÐÀÇ °æ¿ì °³º° ÀÔÀÚ¸¦ °è»êÇÒ ¼ö ¾ø¾ú°í ¾î´À °ÍÀÌ Çöó½ºÆ½ÀÎÁö ¶Ç´Â ´Ù¸¥ °ÍÀÎÁö ½Äº°ÇÒ ¼ö ¾ø¾ú´Ù¡±°í ÁöÀûÇß´Ù.


»õ·Î¿î ¿¬±¸´Â Ä÷³ºñ¾Æ´ë »ý¹°¹°¸®ÇÐÀÚÀÎ ¿¬±¸ °øµ¿ÀúÀÚÀÎ ¿þÀÌ ¹Î(Wei Min)ÀÌ °øµ¿ ¹ß¸íÇÑ ¡®À¯µµ ¶ó¸¸ »ê¶õ Çö¹Ì°æ(stimulated Raman scattering microscopy)¡¯À̶ó´Â ±â¼úÀ» »ç¿ëÇß´Ù. ¿©±â¿¡´Â ƯÁ¤ ºÐÀÚ°¡ °ø¸íÇϵµ·Ï Á¶Á¤µÈ µÎ °³ÀÇ µ¿½Ã ·¹ÀÌÀú¸¦ »ç¿ëÇÏ¿© »ùÇÃÀ» Á¶»çÇÏ´Â ÀÛ¾÷ÀÌ Æ÷ÇԵǾú´Ù.


¿¬±¸ÆÀÀº 7°¡Áö ÀÏ¹Ý Çöó½ºÆ½À» ´ë»óÀ¸·Î °á°ú¸¦ Çؼ®Çϱâ À§ÇØ µ¥ÀÌÅÍ ±â¹Ý ¾Ë°í¸®Áò(algorithm)À» ¸¸µé¾ú´Ù. ¿þÀÌ ¹ÎÀº ¡°°¨ÁöÇØ¾ß ÇÏ´Â °Í°ú ¹«¾ùÀ» °¨ÁöÇÏ°í ÀÖ´ÂÁö ¾Æ´Â °ÍÀº º°°³ÀÇ ¹®Á¦¡±¶ó°í ¸»Çß´Ù.


¿¬±¸ÆÀÀº ¹Ì±¹¿¡¼­ ÆǸŵǴ ¼¼ °¡Áö Àα⠻ý¼ö ºê·£µå(¾î¶² ºê·£µåÀÎÁö´Â ¹àÈ÷Áö ¾ÊÀ½)¸¦ Å×½ºÆ®ÇÏ¿© Å©±â°¡ 100³ª³ë¹ÌÅÍ(§¬)¿¡ ºÒ°úÇÑ Çöó½ºÆ½ ÀÔÀÚ¸¦ ºÐ¼®Çß´Ù.


±×µéÀº L´ç 11¸¸ °³¿¡¼­ 37¸¸ °³ÀÇ Çöó½ºÆ½ Á¶°¢À» ¹ß°ßÇߴµ¥, ±× Áß 90%´Â ³ª³ëÇöó½ºÆ½À̾ú°í, ³ª¸ÓÁö´Â ¹Ì¼¼Çöó½ºÆ½À̾ú´Ù. ¿¬±¸ÆÀµéÀº ¶ÇÇÑ 7°³ÀÇ Æ¯Á¤ Çöó½ºÆ½ Áß ¾î¶² °ÍÀÌ ±×°ÍÀÎÁö¸¦ ¾Ë¾Æ³»¾ú°í, ±×°ÍµéÀÇ ÇüÅÂ¿Í »ý¹° ÀÇÇÐ ¿¬±¸¿¡¼­ °¡Ä¡°¡ ÀÖÀ» ¼ö ÀÖ´Â Ç°ÁúµéÀ» µµÇ¥·Î ÀÛ¼ºÇß´Ù.


ÀϹÝÀûÀÎ °Í Áß Çϳª´Â Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(polyethylene terephthalate) ¶Ç´Â PETÀÌ¿´´Ù. ¸¹Àº ¹°º´ÀÌ ¹Ù·Î ÀÌ ¼ÒÀç·Î ¸¸µé¾îÁ³±â ¶§¹®¿¡ ÀÌ´Â ³î¶ó¿î ÀÏÀÌ ¾Æ´Ï´Ù. º´¿¡ µç ź»êÀ½·á, ½ºÆ÷Ã÷ À½·á, ÄÉø°ú ¸¶¿ä³×Áî¿Í °°Àº Á¦Ç°¿¡µµ »ç¿ëµÈ´Ù.


Ư±Þ ¼±ÅÃÇü PS ¼ÒÇü ¼ÒÇü SRS ¼±ÅÃ.  [±×¸²Ãâó(»çÁø Ãâó) = ¹Ì±¹ ±¹¸³°úÇпøȸº¸(PNAS)]

°ËÃâ °¨µµ ¹× ÇØ»óµµ Æ¯¼ºÈ­¸¦À§ÇÑ Ç¥ÁØ PS ¸¶ÀÌÅ©·Î ³ª³ë ±¸Ã¼ÀÇ SRS À̹Ì¡. [±×¸²Ãâó(picture source) = ¹Ì±¹ ±¹¸³°úÇпøȸº¸(PNAS)]


º´À» ¾ÐÂøÇϰųª ¿­¿¡ ³ëÃâµÇ¸é Á¶°¢ÀÌ ¶³¾îÁ® ³ª°¡¸é¼­ ¹° ¼Ó¿¡ µé¾î°¥ ¼ö ÀÖ´Ù. ÃÖ±Ù ÇÑ ¿¬±¸¿¡ µû¸£¸é ¶Ñ²±(cap)À» ¹Ýº¹ÀûÀ¸·Î ¿­°Å³ª ´ÝÀ» ¶§ ¸¹Àº ÀÔÀÚµéÀÌ ¹° ¼ÓÀ¸·Î µé¾î°¡°í ÀÛÀº Á¶°¢µéÀÌ ¹° ¼ÓÀ¸·Î µé¾î°¡´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.


±×·¯³ª PET´Â ³ªÀÏ·ÐÀÇ ÀÏÁ¾ÀÎ Æú¸®¾Æ¹Ìµå¿¡ ºñÇØ ¾ÐµµÀûÀ̾ú´Ù. ¾ÆÀÌ·¯´ÏÇÏ°Ôµµ Beizhan º£ÀÌÀÜ ¾á(Beizhan Yan)Àº ¡°¾Æ¸¶µµ ¹°À» º´¿¡ ´ã±â Àü¿¡ Á¤¼öÇÏ´Â µ¥ »ç¿ëµÇ´Â Çöó½ºÆ½ ÇÊÅÍ¿¡¼­ ³ª¿Â °ÍÀÏ ¼ö ÀÖ´Ù¡±°í ¸»Çß½À´Ï´Ù. 


Ä÷³ºñ¾Æ´ë ¿¬±¸ÆÀµéÀÌ ¹ß°ßÇÑ ´Ù¸¥ ÀϹÝÀûÀÎ Çöó½ºÆ½À¸·Î´Â Æú¸®½ºÆ¼·»(polystyrene), Æú¸®¿°È­ºñ´Ò(polyvinyl chloride), Æú¸®¸ÞÆ¿ ¸ÞŸũ¸±·¹ÀÌÆ®(polymethyl methacrylate) µî ¸ðµÎ ´Ù¾çÇÑ »ê¾÷ °øÁ¤¿¡¼­ »ç¿ëµÈ´Ù.


¿¬±¸ÆÀµéÀÇ ´Ù¼Ò Ãæ°ÝÀûÀÎ »ý°¢Àº, ±×µéÀÌ °Ë»öÇÑ 7°¡Áö Çöó½ºÆ½ À¯ÇüÀº »ùÇÿ¡¼­ ¹ß°ßµÈ Àüü ³ª³ëÀÔÀÚÀÇ ¾à 10%¸¸À» Â÷ÁöÇß´Ù. ±×µéÀº ³ª¸ÓÁö°¡ ¹«¾ùÀÎÁö ÀüÇô ¸ð¸¥´Ù. ¸¸¾à ±×°ÍµéÀÌ ¸ðµÎ ³ª³ëÇöó½ºÆ½À̶ó¸é, ¸®ÅÍ´ç ¼öõ¸¸ °³°¡ µÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.


±×·¯³ª ¿¬±¸ÆÀµéÀº ¡°°ÑÀ¸·Î º¸±â¿¡ ´Ü¼øÇØ º¸ÀÌ´Â ¹° »ùÇà ³»ºÎÀÇ º¹ÀâÇÑ ÀÔÀÚ ±¸¼ºÀ» ³ªÅ¸³»´Â °ÅÀÇ ¸ðµç °ÍÀÌ µÉ ¼ö ÀÖ´Ù¡±¶ó¸é¼­ ¡°Ãµ¿¬ À¯±â¹°ÀÇ °øÅëÀûÀÎ Á¸Àç´Â È®½ÇÈ÷ ½ÅÁßÇÑ ±¸º°À» ÇÊ¿ä·Î ÇÑ´Ù¡±°í ¿¬±¸³í¹®¿¡¼­ ¹àÇû´Ù.


¿¬±¸ÀÚµéÀº ÀÌÁ¦ ¼öº´ÀÇ ¹üÀ§¸¦ ³Ñ¾î¼­°í ÀÖ´Ù. ¿þÀÌ ¹Î(Wei Min)Àº ¡°¿¬±¸ÇØ¾ß ÇÒ ³ª³ëÇöó½ºÆ½ÀÇ ¼¼°è´Â ¾öû³ª´Ù¡±¸é¼­ ¡°³ª³ëÇöó½ºÆ½ÀÌ Áú·®ÀûÀ¸·Î´Â ¹Ì¼¼Çöó½ºÆ½º¸´Ù ÈξÀ ´ú Æ÷ÇÔµÇÁö¸¸, ±×°ÍÀº Áß¿äÇÑ Å©±â°¡ ¾Æ´Ï´Ù. ¿Ö³ÄÇϸé ÀÛÀº °ÍµéÀÌ ´õ ½±°Ô ¿ì¸® ¾ÈÀ¸·Î µé¾î°¥ ¼ö Àֱ⠶§¹®¡±À̶ó°í °­Á¶Çß´Ù.


¹«¾ùº¸´Ùµµ ¿¬±¸ÆÀÀº »ý¼öº¸´Ù´Â ÈξÀ ÀûÁö¸¸ ¹Ì¼¼Çöó½ºÆ½À» ÇÔÀ¯ÇÑ °ÍÀ¸·Î ¹àÇôÁø ¼öµ¾¹°À» »ìÆ캼 °èȹÀÌ´Ù. 


º£ÀÌÀÜ ¿º(Beizhan Yan) ±³¼ö´Â ¡°»ç¶÷µéÀÌ ¼¼Å¹À» ÇÒ ¶§ Çϼö·Î µé¾î°¡´Â ¹Ì¼¼Çöó½ºÆ½°ú ³ª³ëÇöó½ºÆ½À» ¿¬±¸ÇÏ´Â ÇÁ·ÎÁ§Æ®¸¦ ÁøÇàÇÏ°í ÀÖ´Ù. Áö±Ý±îÁö ±×°¡ °è»êÇÑ ¹Ù¿¡ µû¸£¸é 10ÆÄ¿îµå´ç ¼ö¹é¸¸ °³°¡ ¸¹Àº Ç׸ñÀ» ±¸¼ºÇÏ´Â ÇÕ¼º¹°Áú¿¡¼­ ¹èÃâµÈ´Ù¡±°í ¸»Çß´Ù. ±×¿Í µ¿·áµéÀº »ó¾÷¿ë ¹× ÁÖ°Å¿ë ¼¼Å¹±âÀÇ ¿À¿°À» ÁÙÀ̱â À§ÇÑ ÇÊÅ͸¦ ¼³°èÇÏ°í ÀÖ´Ù.


SRS µ¥ÀÌÅÍ ¿¬°á ±â¹Ý ºÎÇ° ÀÏÄ¡·Î ½Äº°À» ±¸º°ÇÏ´Â °íÀ¯¼ºÀ» º¹±¸ÇÕ´Ï´Ù.  [±×¸²Ãâó(»çÁø Ãâó) = ¹Ì±¹ ±¹¸³°úÇпøȸº¸(PNAS)]

SRS ¸ÂÃãÇü µ¥ÀÌÅÍ ±â¹Ý ½ºÆåÆ®·³ ¸ÅĪ ¾Ë°í¸®ÁòÀ¸·Î ÁßÇÕü ½Äº°À» À§ÇÑ È­ÇÐÀû ƯÀ̼ºÀ» º¹±¸. [±×¸²Ãâó(picture source) = ¹Ì±¹ ±¹¸³°úÇпøȸº¸(PNAS)]

 

Ä÷³ºñ¾Æ´ë ¿¬±¸ÆÀµéÀº °ð ³²±Ø ¼­ºÎ¸¦ µµº¸·Î Ⱦ´ÜÇÏ´Â ¿µ±¹ Çù·ÂÀÚµéÀÌ ÇöÀç ¼öÁýÇÏ°í ÀÖ´Â ´« ¼ÓÀÇ ÀÔÀÚµéÀ» È®ÀÎÇÒ ¿¹Á¤ÀÌ´Ù. ±×µéÀº ¶ÇÇÑ È¯°æº¸°Ç Àü¹®°¡µé°ú Çù·ÂÇÏ¿© ´Ù¾çÇÑ ÀÎü Á¶Á÷¿¡¼­ ³ª³ëÇöó½ºÆ½À» ÃøÁ¤ÇÏ°í ¹ß´Þ ¹× ½Å°æÇÐÀû È¿°ú¸¦ Á¶»çÇÏ°í ÀÖ´Ù.


³ªÀ̽ŠŰ¾È(Naixin Qian)Àº ¡°ÀÌ·¸°Ô ¸¹Àº ¹°°ÇÀ» ¹ß°ßÇÑ °ÍÀº ÀüÇô ¿¹»óÄ¡ ¸øÇÑ ÀÏÀÌ ¾Æ´Ï´Ù¡±¶ó¸é¼­ ¡°¾ÆÀ̵ð¾î´Â ÀÛÀº °ÍÀÌ µÉ¼ö·Ï ´õ ¸¹Àº °ÍÀÌ ÀÖ´Ù´Â °Í¡±À̶ó°í ¿ª¼³Çß´Ù.


ÀÌ ¿¬±¸´Â Ä÷³ºñ¾Æ´ëÇб³ È­ÇкÎÀÇ ½Å°¡¿À(Xin Gao)¿Í »þ¿ÀÄ¡ ¶û(Xiaoqi Lang)°ú  ¶ó¸óÆ®-µµÇãƼ(Lamont-Doherty) Áö±¸°üÃø¼ÒÀÇ  ÇÏÀÌÆã µ¢(Huipeng Deng) ¹× Å׿Àµµ¶ó ¸¶¸®¾Æ ºê¶óÅõ(Teodora Maria Bratu), ±×¸®°í Ä÷³ºñ¾Æ´ë ¸ÞÀϸǰøÁߺ¸°ÇÇб³(Columbia¡¯s Mailman School of Public Health)ÀÇ  Ãë¼ö¾È þ(Qixuan Chen), ·¯Æ®°Å ´ëÇÐ(Rutgers University)ÀÇ ÇǺñ ½ºÅ×ÀÌÇÃÅÏ(Phoebe Stapleton) µîÀÌ °øµ¿ ¿¬±¸ ¹× ¿¬±¸°á°ú¸¦ °øµ¿À¸·Î ÁýÇÊÇß´Ù.


[¿ø¹®º¸±â]


Bottled Water Can Contain Hundreds of Thousands of Previously Uncounted Tiny Plastic Bits, Study Finds

A New Microscopic Technique Zeroes in on the Poorly Explored World of Nanoplastics, Which Can Pass Into Blood, Cells and Your Brain

 


In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. 


Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container.


Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. 


For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments?10 to 100 times greater than previous estimates, which were based mainly on larger sizes.


The study was just published in the journal Proceedings of the National Academy of Sciences.


Nanoplastics are so tiny that, unlike microplastics, they can pass through intestines and lungs directly into the bloodstream and travel from there to organs including the heart and brain. 


They can invade individual cells, and cross through the placenta to the bodies of unborn babies. Medical scientists are racing to study the possible effects on a wide variety of biological systems.


¡°Previously this was just a dark area, uncharted. Toxicity studies were just guessing what¡¯s in there,¡± said study coauthor Beizhan Yan, an environmental chemist at  Columbia Climate School¡¯s Lamont-Doherty Earth Observatory. ¡°This opens a window where we can look into a world that was not exposed to us before.¡±


Worldwide plastic production is approaching 400 million metric tons a year. More than 30 million tons are dumped yearly in water or on land, and many products made with plastics including synthetic textiles shed particles while still in use. 


Unlike natural organic matter, most plastics do not break down into relatively benign substances; they simply divide and redivide into smaller and smaller particles of the same chemical composition. Beyond single molecules, there is no theoretical limit to how small they can get.


Microplastics are defined as fragments ranging from 5 millimeters (less than a quarter inch) down to 1 micrometer, which is 1 millionth of a meter, or 1/25,000th of an inch. (A human hair is about 70 micrometers across.) Nanoplastics, which are particles below 1 micrometer, are measured in billionths of a meter.


Plastics in bottled water became a public issue largely after a 2018 study detected an average of 325 particles per liter; later studies multiplied that number many times over. Scientists suspected there were even more than they had yet counted, but good estimates stopped at sizes below 1 micrometer?the boundary of the nano world.


¡°People developed methods to see nano particles, but they didn¡¯t know what they were looking at,¡± said the new study¡¯s lead author, Naixin Qian, a Columbia graduate student in chemistry. She noted that previous studies could provide bulk estimates of nano mass, but for the most part could not count individual particles, nor identify which were plastics or something else.


The new study uses a technique called stimulated Raman scattering microscopy, which was co-invented by study coauthor Wei Min, a Columbia biophysicist. This involves probing samples with two simultaneous lasers that are tuned to make specific molecules resonate. 


Targeting seven common plastics, the researchers created a data-driven algorithm to interpret the results. ¡°It is one thing to detect, but another to know what you are detecting,¡± said Min.


The researchers tested three popular brands of bottled water sold in the United States (they declined to name which ones), analyzing plastic particles down to just 100 nanometers in size. 


They spotted 110,000 to 370,000 plastic fragment in each liter, 90% of which were nanoplastics; the rest were microplastics. They also determined which of the seven specific plastics they were, and charted their shapes?qualities that could be valuable in biomedical research.


One common one was polyethylene terephthalate or PET. This was not surprising, since that is what many water bottles are made of. (It is also used for bottled sodas, sports drinks and products such as ketchup and mayonnaise.) 


It probably gets into the water as bits slough off when the bottle is squeezed or gets exposed to heat. One recent study suggests that many particles enter the water when you repeatedly open or close the cap, and tiny bits abrade.


However, PET was outnumbered by polyamide, a type of nylon. Ironically, said Beizhan Yan, that probably comes from plastic filters used to supposedly purify the water before it is bottled. Other common plastics the researchers found: polystyrene, polyvinyl chloride and polymethyl methacrylate, all used in various industrial processes.


A somewhat disturbing thought: the seven plastic types the researchers searched for accounted for only about 10% of all the nanoparticles they found in samples; they have no idea what the rest are. If they are all nanoplastics, that means they could number in the tens of millions per liter. 


But they could be almost anything, ¡°indicating the complicated particle composition inside the seemingly simple water sample,¡± the authors write. ¡°The common existence of natural organic matter certainly requires prudent distinguishment.¡±


The researchers are now reaching beyond bottled water. ¡°There is a huge world of nanoplastics to be studied,¡± said Min. He noted that by mass, nanoplastics comprise far less than microplastics, but ¡°it¡¯s not size that matters. It¡¯s the numbers, because the smaller things are, the more easily they can get inside us.¡±


Among other things, the team plans to look at tap water, which also has been shown to contain microplastics, though far less than bottled water. Beizhan Yan is running a project to study microplastics and nanoplastics that end up in wastewater when people do laundry-by his count so far, millions per 10-pound load, coming off synthetic materials that comprise many items. (He and colleagues are designing filters to reduce the pollution from commercial and residential washing machines.) 


The team will soon identify particles in snow that British collaborators trekking by foot across western Antarctica are currently collecting. They also are collaborating with environmental health experts to measure nanoplastics in various human tissues and examine their developmental and neurologic effects.


¡°It is not totally unexpected to find so much of this stuff,¡± said Qian. ¡°The idea is that the smaller things get, the more of them there are.¡±


The study was coauthored by Xin Gao and Xiaoqi Lang of the Columbia chemistry department; Huipeng Deng and Teodora Maria Bratu of Lamont-Doherty; Qixuan Chen of Columbia¡¯s Mailman School of Public Health; and Phoebe Stapleton of Rutgers University.


[Ãâó = Ä÷³ºñ¾Æ´ëÇб³(Columbia University)(https://news.climate.columbia.edu/2024/01/08/bottled-water-can-contain-hundreds-of-thousands-of-previously-uncounted-tiny-plastic-bits-study-finds/) / 2024³â 1¿ù 8ÀÏ]


[¿¬±¸³í¹®Ãâó = ±¹¸³°úÇпøȸº¸(Proceedings of the National Academy of Sciences, PNS) ( https://www.pnas.org/doi/10.1073/pnas.2300582121 ) / 2024³â 1¿ù 8ÀÏÀÚ]

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] »êÈ£¼¼ ¿öÅÍ, ¹°ÀÎÇÁ¶ó Çâ»ó ¹× ¼öµµ ½Ã½ºÅÛ ¾ÈÀü¡¤º¹¿ø·Â °­È­ À§ÇÑ GRC ½Åû¼­ Á¦Ãâ
´ÙÀ½±Û [¿µ±¹] ¼­¹øÆ®·»Æ®, ´õÀ¢Æ® ¹ë¸® ¼öµµ±³ ȸº¹Åº·Â¼º ÇÁ·ÎÁ§Æ® Âø¼ö
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.