Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2013] [¹Ì±¹] È«¼ö°¡ ¾Æ´Ñ ÇÑ·© Áö´ë Ãʱ⠰ÀÇ Áú¼Ò °íÁ¤¿ø
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2013.11.12 Á¶È¸¼ö 793
ÆÄÀÏ÷ºÎ
 [¹Ì±¹] È«¼ö°¡ ¾Æ´Ñ ÇÑ·© Áö´ë Ãʱ⠰ÀÇ Áú¼Ò °íÁ¤¿ø



Ãʱâ Àηù°¡ ³ó°æÀ» ½ÃÀÛÇÒ ¹«·ÆÀÇ ºÏ±Ø¿¡¼­´Â, È«¼ö°¡ ¹ü¶÷¿ø(floodplain) ¿µ¿ªÀ» ºñ¿ÁÇÏ°Ô ¸¸µéÁö ¸øÇÑ °ÍÀ¸·Î º¸ÀδÙ. ¹Ì±¹ ¿¬±¸Áøµé¿¡ ÀÇÇϸé, Áö±¸ »ó ´Ù¸¥ Áö¿ª°ú ´Þ¸®, ºÏ±ØÀÇ ¼ö°è¿¡´Â »ç½Ç»ó Áú¼Ò°¡ °ÅÀÇ Á¸ÀçÇÏÁö ¾Ê¾Ò±â ¶§¹®ÀÌ´Ù. ´ë½Å °í´ë ½ºÄ­µð³ªºñ¾ÆÀΰú Ãʱ⠷¯½Ã¾Æ¿Í ij³ª´Ù Á¤ÂøÀεéÀº, ³²Á¶·ù(cyanobacteria)¶ó°í ºÒ¸®´Â ¹Ì»ý¹°ÀÌ Á¦°øÇÏ´Â Áú¼Ò¿øÀ» ÅëÇØ Çª¸¥ ÃÊ¿øÀ» ¾òÀ» ¼ö ÀÖ¾ú´Ù. 

À̸¦ ÅëÇØ Á¤ÂøÀεéÀº »ç³ÉÀ» Çϰųª, °¡Ãàµé¿¡°Ô »ç·á¸¦ °ø±ÞÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ÀÌ·¯ÇÑ °úÁ¤Àº ÀÚ¿¬ ±×´ë·ÎÀÇ ¹ü¶÷¿ø ¿µ¿ª¿¡¼­ ¾ÆÁ÷±îÁö ÀÌ·ç¾îÁö°í ÀÖ´Ù. ¹Ì±¹ ¿ö½ÌÅÏ´ëÇб³ Thomas DeLuca ±³¼ö´Â À̹ø ¿¬±¸ °á°ú¿¡ ´ëÇØ ¸Å¿ì ³î¶ø´Ù°í ÆòÇÑ´Ù. ±× µ¿¾È, ½Ä¹° »ýÀå¿¡ ÇʼöÀûÀÎ Áú¼Ò´Â ¸Å³â º½¿¡ ¹ß»ýÇÏ´Â ÇÏõ È«¼ö¿¡ ÀÇÇÑ °ÍÀ¸·Î º¸¾Ò±â ¶§¹®ÀÌ´Ù. À̹ø ¿¬±¸ °á°ú´Â PLOS ONE ÃÖ½ÅÈ£¿¡ °ÔÀçµÈ´Ù. 

³²Á¶·ù°¡ ¹ü¶÷¿øÀÇ Áú¼Ò °íÁ¤¿¡ °ü¿©ÇÏ¿´´Ù´Â À̹ø ¹ß°ßÀ» ÅëÇØ, ±×°£ ÇÐÀÚµé °£¿¡ ÀÌ·ç¾îÁ³´ø ³íÀï, Áï ºñ·á ¾øÀÌ ¼ö ¹é³â Àü Àηù°¡ ¾î¶»°Ô ¸ñÃʸ¦ ¼öÈ®ÇÒ ¼ö ÀÖ¾ú´Â°¡¿¡ ´ëÇÑ Áú¹®À» ÀϺκРÇØ°áÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀδÙ. ±×·¸´Ù¸é ¹ü¶÷¿ø ¿µ¿ª¿¡¼­ÀÇ ³²Á¶·ùÀÇ ÀÌ·Î¿î ¿ªÇÒÀ» ÀÏ¹Ý Åä¾ç¿¡µµ È°¿ëÇÔÀ¸·Î½á Àΰø ºñ·áÀÇ »ç¿ë·®À» ÁÙÀÏ ¼ö ÀÖÀ» °ÍÀΰ¡? 

DeLuca ±³¼ö´Â ÀÌ¿¡ ´ëÇÑ ¹°À½¿¡ ´äÀ» Çϱâ À§Çؼ­´Â Á¶±Ý ´õ Á¤È®ÇÑ °­ À¯¿ª ½Ã½ºÅÛÀÇ Áú¼Ò ¸ðµ¨À» ¿¬±¸ÇÒ ÇÊ¿ä°¡ ÀÖ´Ù°í ¸»ÇÑ´Ù. ÇöÀç ´ëºÎºÐÀÇ Áú¼Ò ¸ðµ¨¿¡¼­´Â ¹ü¶÷¿øÀÇ Áú¼Ò °íÁ¤ ¹ÝÀÀÀ» °í·ÁÇÏ°í ÀÖÁö ¾ÊÀ¸¸ç, ´ëºÎºÐÀÇ °úÇÐÀÚµéÀº »ê¾÷ ºñ·á, Æó¼ö󸮽ü³·ÎºÎÅÍÀÇ ¹èÃâ¼ö µîÀÌ À¯¹ßÇÏ´Â °­À¸·ÎÀÇ Áú¼Ò À¯ÀÔ¸¸À» ¸ðµ¨¸µÇϱ⠶§¹®ÀÌ´Ù. 

DeLuca ±³¼ö ¿¬±¸ÁøÀº ºÏºÎ Æä³ë½ºÄ­µð¾Æ(Fennoscandia)ÀÇ 10°³ °­°ú 71°³ ¹ü¶÷¿øÀ» ¿¬±¸ Àå¼Ò·Î ¼±ÅÃÇÏ¿´´Ù. ÇØ´ç Áö¿ªÀÇ »ó·ù´Â ¸Å¿ì ûÁ¤Çϸç, ´ï °Ç¼³ ¹× Àΰ£ È°µ¿ÀÇ ¿µÇâ¿¡ ÀÇÇÑ Áú¼Ò ³óÃàÀÌ ÀÌ·ç¾îÁöÁö ¾ÊÀº °÷À¸·Î, Áö±¸ »ó¿¡¼­ 2¹ø° Å« ¼­½Ä ÇüÅÂÀÎ µ¿Åä´ëÀÌ´Ù. ºÏºÎ ¿µÅä´Â °ü¸ñ°ú ¸ñÃÊ°¡ ºÎÁ·ÇÏ°í ºÒ¸ðÀÇ Åä¾çÀ¸·Î, ÀϹÝÀûÀÎ Áú¼ÒÀÇ °íÁ¤ ¹ÝÀÀÀÌ ¾î·Á¿î ȯ°æÀ̾ú´Ù. 

ÀÌµé °íÁö´ë¿¡¼­´Â ±êÅÐ À̳¢(feather moss)°¡ ³²Á¶·ù°¡ ¼­½ÄÇÒ ¼ö ÀÖ´Â ¹Ì¼Ò ¼­½Ä ȯ°æ(microhabitat)À» Á¦°øÇÏ¿´À¸¸ç, À̸¦ ÅëÇØ ³ª¹«¿Í °ü¸ñÀÇ »ýÀå¿¡ ÇÊ¿äÇÑ ÀûÀýÇÑ ¾çÀÇ Áú¼Ò°¡ °ø±ÞµÉ ¼ö ÀÖ¾ú´Ù. ¹ü¶÷¿ø »ó¿¡¼­´Â, °èÀý µû¶ó ħ¼ö¿Í ´ë±â Áß ³ëÃâÀÌ ¹Ýº¹µÇ´Â ÁøÈë°ú ¹öµå³ª¹« µîÀÇ »Ñ¸® ¹× Áٱ⿡ ºÙÀº, µÎ²®°í ²ö²öÇÑ °ËÀº ³²Á¶·ù µ¢¾î¸®·ÎºÎÅÍ ³ôÀº ¼ÓµµÀÇ Áú¼Ò °íÁ¤ÀÌ ÀÌ·ç¾îÁ³´Ù.

 DeLuca ±³¼ö´Â ¡°¿ì¸®´Â ¿ì½º°¹¼Ò¸®·Î ¹ü¶÷¿øÀ» ºÏÂÊÀÇ ¸Í±×·Îºê(mangroves)¶ó°í ¸»Çϱ⵵ ÇÑ´Ù. ÀÌ´Â ¸¶Ä¡ ¿­´ë¿Í ¾Æ¿­´ë Áö¿ª ¸Í±×·Îºê(°­°¡³ª ´ËÁö¿¡¼­ »Ñ¸®°¡ Áö¸é ¹ÛÀ¸·Î ³ª¿À°Ô ÀÚ¶ó´Â ¿­´ë ³ª¹«)ÀÇ ¸¶ÀÌÅ©·Î ¹öÀüó·³, º¹ÀâÇÑ ¹öµå³ª¹« Áٱ⠼ӿ¡¼­ ³ôÀº È°µ¿¼ºÀ» °¡Áø ³²Á¶·ù ±ºÁýÀÌ ¼û¾î »ç´Â °Í °°±â ¶§¹®¡±À̶ó°í ¸»ÇÑ´Ù. 

¾îµÓ°í, Ãä°í, ´« ³»¸®´Â ºÏ ½º¿þµ§ÀÇ °Ü¿ï ³¯¾¾¿¡µµ ºÒ±¸ÇÏ°í, ÀÌ·¯ÇÑ È¯°æ¿¡¼­ÀÇ ³²Á¶·ù´Â µû¶æÇÑ Ç÷θ®´ÙÀÇ ³²Á¶·ù¿Í À¯»çÇÑ Áú¼Ò °íÁ¤ ¼Óµµ¸¦ º¸ÀδÙ. ¹öµå³ª¹«¿Í »çÃÊ¿¡°Ô °ø±ÞµÇ´Â ³²Á¶·ù °íÁ¤ Áú¼ÒÀÇ ¾çÀº ´ë·«ÀûÀ¸·Î, ¹Ì±¹ Áß¼­ºÎ ³óºÎµéÀÌ °î¹° °æÀÛÀ» À§ÇØ ÅõÀÔÇÏ´Â Àüü »ê¾÷ ºñ·á ±Ô¸ðÀÇ 1/4¿¡ ÇØ´çÇÏ´Â ¾çÀÌ´Ù. 

Àΰø ºñ·á´Â »ý»ê ¹× »ç¿ë °úÁ¤¿¡¼­ ¿¬·á ¼Ò¸ð°¡ »ó´çÈ÷ ³ôÀ¸¸ç, 4 ÆÄ¿îµåÀÇ Áú¼Ò ºñ·á »ý»ê¿¡ ¾à 1 °¶·ÐÀÇ µðÁ©ÀÌ ¿¡³ÊÁö·Î ÇÊ¿äÇÏ´Ù. ƯÈ÷ °³¹ßµµ»ó±¹ÀÇ °æ¿ì, Áú¼Ò ºñ·á È°¿ë ºñÀ²ÀÌ ±Þ°ÝÇÏ°Ô »ó½ÂÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â È­¼® ¿¬·áÀÇ ¼Òºñ¸¦ °¡¼ÓÈ­½ÃÅ°´Â °á°ú¸¦ ³º´Â´Ù. 

¹Ý¸é, Àΰø ºñ·á°¡ °ø±ÞµÈ °æÀÛ Åä¾ç¿¡¼­´Â ³²Á¶·ù°¡ ÀÚ¿¬ÀûÀ¸·Î Áú¼Ò¸¦ °íÁ¤ÇÏ´Â °úÁ¤À» °ÅÄ¡Áö ¾Ê´Â´Ù. ÀÌ´Â ¿ÜºÎ ȯ°æÀ¸·ÎºÎÅÍ Áú¼Ò °ø±ÞÀÌ »¡¶ó, ±»ÀÌ ³²Á¶·ù°¡ ½º½º·Î Áú¼Ò °íÁ¤¿¡ ¿¡³ÊÁö¸¦ ³¶ºñÇÒ ÇÊ¿ä°¡ ¾ø±â ¶§¹®ÀÌ´Ù. DeLuca ±³¼ö´Â, °Å´ëÇÑ Àΰø ºñ·áÀÇ ÅõÀÔ ¾øÀÌ ³²Á¶·ùÀÇ Áú¼Ò °íÁ¤ ´É·Â ¸¸À¸·Î, È¿°úÀûÀ¸·Î Çö´ë ³ó¾÷ ½Ã½ºÅÛÀÇ »ý»ê¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â ¹æ¾ÈÀ» °í¹Î ÁßÀÌ´Ù.


[Ãâó : KISTI ¹Ì¸®¾È(http://mirian.kisti.re.kr) ¡º±Û·Î¹úµ¿Çâºê¸®ÇÎ(GTB)¡»2013. 11. 12]


[¿ø¹®º¸±â]

Floods Didn't Provide Nitrogen 'Fix' for Earliest Crops in Frigid North


Floods didn't make floodplains fertile during the dawn of human agriculture in Earth's far north because the waters were virtually devoid of nitrogen, unlike other areas of the globe scientists have studied.

Instead, the hardy Norsemen and early inhabitants of Russia and Canada have microorganisms called cyanobacteria to mostly thank for abundant grasses that attracted game to hunt and then provided fodder once cattle were domesticated. The process is still underway in the region's pristine floodplains.

The new findings are surprising because it's long been assumed that nitrogen crucial to plant growth mainly arrived with floods of river water each spring, according to Thomas DeLuca, a University of Washington professor of environmental and forest sciences and lead author of a paper in the Nov. 6, 2013 issue of the journal PLOS ONE.

Discovering that cyanobacteria in the floodplains were responsible for nitrogen fixation -- that is taking it from the atmosphere and "fixing" it into a form plants can use -- partially resolves the scientific debate of how humans harvested grasses there for hundreds of years without fertilizing, DeLuca said. 

It raises the question of whether farmers today might reduce fertilizer use by taking advantage of cyanobacteria that occur, not just in the floodplains studied, but in soils around the world, he said.

It also might lead to more accurate models of nitrogen in river systems because none of the prominent models consider nitrogen being fixed in floodplains, DeLuca said. 

Scientists model nitrogen loading of rivers, especially where industrial fertilizers and effluent from wastewater-treatment plants cause dead zones and other problems in the lower reaches and mouths of rivers.

Ten rivers and 71 flood plains were studied in northern Fennoscandia, a region that includes parts of Scandinavia and Finland. The rivers were chosen because their upper reaches are pristine, haven't been dammed and are not subject to sources of human-caused nitrogen enrichment -- much like river systems humans encountered there hundreds of years ago, as agriculture emerged in such "boreal" habitats. Boreal habitat -- found at 60 degrees latitude and north all the way into the Arctic Circle, where it meets tundra habitat -- is the second largest biome or habitat type on Earth.

In the northern regions of the boreal, the surrounding hillsides have thin, infertile soils and lack shrubs or herbs that can fix nitrogen. In these uplands, feather mosses create a microhabitat for cyanobacteria, which fix a modest amount of nitrogen that mostly stays on site in soils, trees and shrubs. Little of it reaches waterways.

On the floodplains, high rates of nitrogen fixation occur in thick slimy black mats of cyanobacteria growing in seasonably submerged sediments and coating the exposed roots and stems of willows and sedges.
"We joke and call the floodplains the 'mangroves of the North' because there are almost impenetrable tangles of willow tree roots in places, like a micro version of the tropical and subtropical mangroves that are known to harbor highly active colonies of cyanobacteria," DeLuca said.

"It turns out there's a lot of nitrogen fixation going on in both," he said. 

For example, the scientists discovered that in spite of the dark, cold, snowy winters of Northern Sweden, the cyanobacteria there fix nitrogen at rates similar to those living the life in the toasty, sun-warmed Florida Everglades.

The amount of nitrogen provided by the cyanobacteria to unharvested willows and sedges is perhaps a quarter of what U.S. farmers in the Midwest apply in industrial fertilizers to grain crops and as little as a sixth of what they apply to corn.

Human-made fertilizers can be fuel-intensive to produce and use, for example, it takes the energy of about a gallon of diesel to produce 4 pounds of nitrogen fertilizer. In developing countries in particular, nitrogen fertilization rates are spiraling upward, driving up fossil-fuel consumption, DeLuca said. Meanwhile, cyanobacteria naturally occurring in farm soils aren't fixing nitrogen at all in the presence of all that fertilizer, they just don't expend the energy when nitrogen is so readily available, he said.

"Although modest in comparison to modern fertilization, the observation that cyanobacteria could drive the productivity of these boreal floodplain systems so effectively for so long makes one question whether cyanobacteria could be used to maintain the productivity of agricultural systems, without large synthetic nitrogen fertilizer inputs," he said.

Co-authors on the paper are Olle Zackrisson and Ingela Bergman with the Institute for Subarctic Landscape Research, Sweden, Beatriz Diez with Pontificia Universidad Catolica, Chile, and Birgitta Bergman with Stockholm University.



¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [UAE] ¾ÆºÎ´Ùºñ Çϼö󸮽ü³ ¸¶½ºÅÍÇ÷£ ¿ë¿ª ÀÔÂû ½Ç½Ã °èȹ
´ÙÀ½±Û [¹Ì±¹] ¹°¿¡¼­ ¿À¿°¹°ÁúÀ» ºÐÇØÇÏ°í »ýºÐÇؼº È­ÇÕ¹°¸¸ ³²±â´Â Àϱ¤ È°¼º-³ª³ë±×¸®µå
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.