Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2013] [¹Ì±¹] ±Ý¼Ó¸¦ ÀÌ¿ëÇÏ´Â ¸Þź ¼·Ãë ¹Ì»ý¹°
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2013.11.15 Á¶È¸¼ö 457
ÆÄÀÏ÷ºÎ


[¹Ì±¹] ±Ý¼Ó¸¦ ÀÌ¿ëÇÏ´Â ¸Þź ¼·Ãë ¹Ì»ý¹°



ÇØÀú ´ë·ú ÁÖº¯ºÎ, Áï ¼ö¸é ¾Æ·¡ ¼ö ¹é ¹ÌÅÍ ¾Æ·¡ÀÇ ÇØÀú¿¡´Â, Àú¿Â°ú °í¾Ð ȯ°æ ÇÏ¿¡¼­, ¸ÞźÀÌ ¾óÀ½ °áÁ¤¿¡ °¤Çô ÀÖ´Â ¸Þź ÇÏÀ̵巹ÀÌÆ®(methane hydrates)°¡ Á¸ÀçÇÑ´Ù. 


¸Þź ÇÏÀ̵巹ÀÌÆ®´Â ÀáÀçÀûÀÎ ¿¡³ÊÁö ¿ø·á·Î °¢±¤ ¹Þ°í ÀÖÀ¸³ª, ÇÑÆíÀ¸·Î´Â Çؼö ¿Âµµ »ó½Â°ú ÁöÁø µîÀ¸·Î ÀÎÇØ ´ë±â·Î ¸ÞźÀÌ À¯ÃâµÉ °æ¿ì ¹ß»ýÇÒ ¼ö ÀÖ´Â °Å´ëÇÑ Áö±¸ ¿Â³­È­ÀÇ À¯¹ß¿øÀ¸·Îµµ ¿©°ÜÁø´Ù. 


ÇØÀú¿¡´Â ÀÌ·¯ÇÑ ¸ÞźÀ» µ¶Æ¯ÇÑ ¹æ¹ýÀ» ÅëÇØ ¼·ÃëÇÏ´Â ¹Ì»ý¹° Çù·Â °ü°è°¡ Á¸ÀçÇÑ´Ù. ¹Ì±¹ ¿¬±¸ÁøÀº ÀÌµé ¹Ì»ý¹°ÀÇ ¿µ¾çÇÐÀû ¿ä±¸ »çÇ׿¡ °üÇÑ ³î¶ó¿î ½Ã¾ß¸¦ Á¦°øÇÏ°í ÀÖ´Ù. 


°úÇÐÀÚµéÀº µÎ °¡Áö ¹Ì»ý¹°ÀÌ ¸ÞźÀ» ¼ÒºñÇÏ´Â °æ·Î¿¡ °üÇÑ »ýÈ­ÇÐÀû ÀÌÇظ¦ ÀÌ¹Ì ÇÏ°í ÀÖ¾úÁö¸¸, °øÁ¤¿¡ °üÇÑ »ó¼¼ÇÑ »çÇ×Àº ¿©ÀüÈ÷ ¹Ì½ºÅ͸®·Î ³²¾ÆÀÖ¾ú´Ù. 


À̹ø ¿¬±¸¿¡¼­´Â ÈñÀ¯ ¹Ì·® ±Ý¼ÓÀÎ ÅÖ½ºÅÙ(W)ÀÌ ¸Þź ºÐÇØ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù´Â »ç½ÇÀÌ ¹àÇôÁ³´Ù. Á¶Áö¾Æ °ø´ë Jennifer Glass ±³¼ö´Â ¡°ÀÌ´Â Àú¿Â »ýÅ°迡¼­ÀÇ ¹Ì»ý¹° ÅÖ½ºÅÙ È¿¼Ò¿¡ °üÇÑ Ã¹ ¹ø° Áõ°Å¡±¶ó°í ¼³¸íÇÑ´Ù. À̹ø ¿¬±¸ °á°ú´Â ¡°Environmental Microbiology¡± ÃÖ½ÅÈ£¿¡ °ÔÀçµÈ´Ù. 


°ø»ý °ü°è·Î »ì¾Æ°¡´Â ¸Þź ¼·Ãë ¹Ì»ý¹°Àº ¸ÞźÀ» ¼·ÃëÇÑ ÈÄ ÀÌ»êȭź¼Ò¸¦ ¹èÃâÇÑ´Ù. ÀÌ·¯ÇÑ ¹Ì»ý¹°µéÀº ¸ÞźÀ» ź¼Ò¿ø ¹× ¿¡³ÊÁö¿øÀ¸·Î »ç¿ëÇÏ´Â °ÍÀÌ´Ù. 


°èÅë¹ß»ýÇÐÀûÀ¸·Î, ¹Ì»ý¹° °£ °ø»ýÀº ¹ÚÅ׸®¾Æ¿Í °í¼¼±Õ °£ÀÇ °ü°è·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. ANME·Î ¸í¸íµÈ °í¼¼±ÕÀº Çø±â¼º ¸Þź ¿µ¾ç °í¼¼±ÕÀ̸ç, ¹ÚÅ׸®¾Æ´Â Ȳ-ÀÌ¿ë µ¨Å¸ÇÁ·ÎÅ׿À¹ÚÅ׸®¾Æ(deltaproteobacteria)ÀÌ´Ù. 


ÇØÀú »óÀÇ ¹Ì»ý¹° È°µ¿À» ¾Ë¾Æº¸±â À§ÇØ, ¿¬±¸ÆÀÀº JasonÀ̶ó ºÒ¸®´Â ¿ø°Ý Á¶Á¤ ÇØÀú ·Îº¿À» ½ÇÇè¿¡ È°¿ëÇÏ¿´´Ù. ¹Ì»ý¹°¿¡ ÀÇÇØ ¹èÃâµÇ´Â ÀÌ»êȭź¼Ò´Â ¼öÁßÀÇ ¹«±â¹°°ú ¹ÝÀÀÇÏ¿© ź»êÄ®½·À» Çü¼ºÇÑ´Ù. 


Glass ±³¼ö´Â ¡°¼ö¹é ³â µ¿¾È ÇØÀú¿¡ ½×ÀΠź»êÄ®½·ÀÇ °æ°üÀº ¸¶Ä¡ °Å´ëÇÑ »êÀ» º¸´Â °Í°ú °°´Ù¡±°í ¼³¸íÇÏ¿´´Ù. Glass ±³¼öÆÀÀº ÇØÀú ·Îº¿ JasonÀÌ Ã¤ÃëÇØ ¿Â ÅðÀû ½Ã·á·ÎºÎÅÍ À¯ÀüÀÚ¿Í ´Ü¹éÁú ¿°±â¼­¿­À» ºÐ¼®ÇÏ¿´´Ù. 


ÀÌ·¯ÇÑ À¯ÀüÀÚ ¼öÁýÀº ÅðÀû¹°ÀÇ ¸ÞŸÁö³ð(metagenome), Áï ƯÁ¤ ȯ°æ ³» ¹Ì»ý¹°ÀÇ ÃÑüÀû À¯Àü Á¤º¸¸¦ ±¸¼ºÇÏ°Ô µÈ´Ù. 


¶ÇÇÑ ´Ü¹éÁú ¿°±â¼­¿­ Á¤º¸ ¼öÁýÀº ÅðÀû¹°ÀÇ ¸ÞŸ´Ü¹éÁúü(metaproteome)À̶ó´Â ƯÁ¤ ȯ°æ ³» ¹Ì»ý¹° À¯·¡ ´Ü¹éÁú ÃÑü¸¦ ±¸¼ºÇÏ°Ô µÈ´Ù. À̸¦ ÅëÇØ ¿¬±¸ÁøÀº, ¹Ì»ý¹°ÀÌ ¸ÞźÀ» ¼·ÃëÇÒ ¶§ ÇÊ¿äÇÑ È¿¼ÒÀÇ ÀÛµ¿À» À§Çؼ± ÅÖ½ºÅÙÀÌ ÇÊ¿äÇÏ´Ù´Â »ç½ÇÀ» ¹àÇô³Â´Ù. 


Formylmethanofuran dehydrogenase¶ó´Â ´Ü¹éÁúÀº ¸ÞźÀÌ ÀÌ»êȭź¼Ò·Î ÀüȯµÇ´Â °æ·ÎÀÇ ¸¶Áö¸·¿¡ ÀÛ¿ëÇϸç, ÀÌ´Â ¸Þź »êÈ­¿¡ ÇʼöÀûÀÎ ´Ü°èÀÌ´Ù. 


Àú¿Â ȯ°æ¿¡¼­ÀÇ ¹Ì»ý¹°Àº ÀϹÝÀûÀ¸·Î ¸ô¸®ºêµ§(Mo)À» ÀÌ¿ëÇϸç, ¸ô¸®ºêµ§Àº ÅÖ½ºÅÙ°ú È­ÇÐÀû ¼ºÁúÀÌ ¸Å¿ì À¯»çÇϸ鼭µµ ÀÌ¿ë°¡´É¼ºÀÌ ÈξÀ ³ôÀº ÆíÀÌ´Ù. 


ÇÏÁö¸¸ ¸Þź ¼·Ãë °í¼¼±ÕÀÌ ¸ô¸®ºêµ§ÀÌ ¾Æ´Ñ ÅÖ½ºÅÙÀ» ÀÌ¿ëÇÏ´ÂÁö¿¡ ´ëÇؼ­´Â ¾ÆÁ÷±îÁö ¾Ë·ÁÁ® ÀÖÁö ¾Ê´Ù. ´Ù¸¸ ¸Þź ¼·Ãë °úÁ¤¿¡¼­ ÅÖ½ºÅÙÀÌ ¸ô¸®ºêµ§¿¡ ºñÇØ È°¿ëÀÌ ¿ëÀÌÇÑ ±¸Á¶¸¦ °¡Á³À» °ÍÀ¸·Î ÃßÁ¤µÇ´Â ¹ÙÀÌ´Ù. 


Glass ±³¼ö´Â Çâ¼ö À¯ÀüÀÚ ¹× È­ÇÐÀû ¼öÁØ¿¡¼­ ÀÌ·¯ÇÑ °ø»ý °ü°è ¹Ì»ý¹°ÀÇ ¸Þź ¼·Ãë °úÁ¤À» ¹àÇô³»°íÀÚ ÇÑ´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ¹Ì·¡ÀÇ Áö±¸ ¿Â³­È­¿Í CO2 ³óµµ Áõ°¡ °úÁ¤¿¡ ´ëÇÑ ÀÌÇظ¦ ³ô¿©Áִµ¥ ÀÏÁ¶ÇÒ °ÍÀ¸·Î ±â´ëµÈ´Ù. 



[Ãâó : KISTI ¹Ì¸®¾È(http://mirian.kisti.re.kr) ¡º±Û·Î¹úµ¿Çâºê¸®ÇÎ(GTB)¡»2013. 11. 15]



[¿ø¹®º¸±â]


Methane-Munching Microorganisms Meddle With Metals


On the continental margins, where the seafloor drops hundreds of meters below the water's surface, low temperatures and high pressure lock methane inside ice crystals. 


Called methane hydrates, these crystals are a potential energy source, but they are also a potential source of global warming if massive amounts of methane were released during an earthquake or by rising ocean temperatures.


A pair of cooperating microbes on the ocean floor "eats" this methane in a unique way, and a new study provides insights into their surprising nutritional requirements. 


Learning how these methane-munching organisms make a living in these extreme environments could provide clues about how the deep-sea environment might change in a warming world.


Scientists already understood some details about the basic biochemistry of how these two organisms consume methane, but the details of the process have remained mysterious. 


The new study revealed that a rare trace metal -- tungsten, also used as filaments in light bulbs -- could be important in the breakdown of methane.


"This is the first evidence for a microbial tungsten enzyme in low temperature ecosystems," said Jennifer Glass, an assistant professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology.


The study was recently published online in the journalEnvironmental Microbiology. The research was sponsored by the Department of Energy, NASA Astrobiology Institute and the National Science Foundation. 


Glass conducted the research while working as a NASA Astrobiology post-doctoral fellow at the California Institute of Technology, in the laboratory of professor Victoria Orphan.


The methane-eating organisms, which live in symbiosis, consume methane and excrete carbon dioxide.


"Essentially, they are eating it," Glass said. "They are using some of the methane as a carbon source and most of it as an energy source."


Phylogenetically speaking, one microbial partner belongs to the Bacteria, and the other is in the Archaea, representing two distinct domains of life. 


The archaea is named ANME, or anaerobic methanotrophic archaea, and the other is a sulfate-utilizing deltaproteobacteria. Together, the organisms form "beautiful bundles," Glass said.


For a close-up view of the action on the sea floor, the research team used the underwater submersible robot Jason. 


The robot is an unmanned, remotely operated vehicle (ROV) and can stay underwater for days at a time. The research expedition in which Glass participated was Jason's longest continuous underwater trip to date, at four consecutive days underwater.


The carbon dioxide excreted by the microbes reacts with minerals in the water to form calcium carbonate. 


As the researchers saw through Jason's cameras, calcium carbonate has formed an exotic landscape on the ocean floor over hundreds of years.


"There are giant mountains on the seafloor of calcium carbonate," Glass said. "They are gorgeous. It looks like a mountain landscape down there."


While on the seafloor, Jason's robotic arm collected samples of sediment.


Back in the lab, researchers sequenced the genes and proteins in these samples. 


The collection of genes constitutes the meta-genome of the sediment, or the genes present in a particular environment, and likewise the proteins constitute a metaproteome. 


The research team discovered evidence that an enzyme used by microbes to "eat" methane may need tungsten to operate.


The enzyme (formylmethanofuran dehydrogenase) is the last in the pathway of converting methane to carbon dioxide, an essential step for methane oxidation.


Microorganisms in low temperature environments typically use molybdenum, which has similar chemical properties to tungsten but is usually much more available (tungsten is directly below molybdenum on the periodic table). 


Why these archaea appear to use tungsten is unknown. One guess is that tungsten may be in a form that is easier for the organisms to use in methane seeps, but that question will have to be answered in future experiments.


"We don't know exactly why the organisms seem to be making a protein that binds the rare element tungsten instead of the more commonly used molybdenum," Glass said.


Glass is currently writing a grant proposal to study a similar process in northern peatlands, which are large expanses of water and dead organic material. 


These peatlands, found in large expanses of high-latitude Canada, Europe and Russia, are significant sources of methane and that flux may increase with warming temperatures. 


Glass also plans to expand her research into oxygen-minimum zones, where large amounts of nitrous oxide are produced. Nitrous oxide is an important greenhouse gas and degrades the ozone layer.


"We want to understand on a gene level and on a chemical level, what's going on in these processes, and then understand how this is going to change in the future with global warming and rising CO2," Glass said.



[¿ø¹®ÃâÀú : http://www.sciencedaily.com/releases/2013/11/131111112645.htm]


¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ij³ª´Ù] Ê¥, Point Lepreau ¿øÀü È­Çй°Áú ȯ°æ ´©Ãâ
´ÙÀ½±Û [µ¶ÀÏ]170% Áõ°¡°¡ ¿¹»óµÇ´Â ÇØ¾ç »ê¼ºÈ­
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.