Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2014] [½Ì°¡Æ÷¸£] È­ÇÐÀû º¯È¯À» ÅëÇÑ ¹Ì¼¼±¸Á¶¸¦ ÀÌ¿ëÇØ ¿ÀÀÏ ¹× ¹° ±â¹ÝÀÇ ¿À¿°Á¦°Å
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.04.15 Á¶È¸¼ö 509
ÆÄÀÏ÷ºÎ

[½Ì°¡Æ÷¸£] È­ÇÐÀû º¯È¯À» ÅëÇÑ ¹Ì¼¼±¸Á¶¸¦ ÀÌ¿ëÇØ ¿ÀÀÏ ¹× ¹° ±â¹ÝÀÇ ¿À¿°Á¦°Å



¿¬²É ÀÙ(lotus leave)À̳ª ³ªºñÀÇ ³¯°³¿Í °°ÀÌ ¹°À» ¸·À» ¼ö ÀÖ´Â ÀÚ¿¬ Ç¥¸é(Natural surface)Àº Á¾Á¾ ¾×ü »óÅÂÀÇ ¹°¹æ¿ï ¾Æ·¡¿¡ Á¸ÀçÇÏ´Â °ø±â¸¦ »ç·ÎÀâÀ» ¼ö ÀÖ´Â °­ÇÏ°í ¹Ì¼¼ÇÑ Å©±âÀÇ ±¸Á¶¹°À» °¡Áö°í ÀÖ´Ù.

ÀÌ·¯ÇÑ »ý¹°ÇÐÀû ±¸Á¶¸¦ ¸ð¹æÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº ¹æ¼ö¼ºÀÌ ¶Ù¾î³­ ¡®ÃʼҼö¼º (superhydrophobic)¡¯ ÄÚÆà ±â¼úÀ» °³¹ßÇÒ ¼ö ÀÖ¾ú´Ù. ÇÏÁö¸¸, ¾ÆÁ÷±îÁö ¹°¿¡ ºñÇØ ÈξÀ ³·Àº Ç¥¸éÀå·Â(surface tension)À» Áö´Ï¸ç ´Ù¼Ò ÆÛÁö´Â ¼ºÁúÀ» Áö´Ñ źȭ¼ö¼Ò ±â¹ÝÀÇ ¿ÀÀÏ¿¡ ´ëÇÑ ¹æ¼ö ±â¼úÀº ÀÚ¿¬°è¿¡ Àß ¾Ë·ÁÁöÁö ¾Ê°í ÀÖ´Ù. 


ÀÌ¿¡ ½Ì°¡Æ÷¸£ A*STAR Àç·á°øÇבּ¸¼Ò(A*STAR Institute of Materials Research and Engineering)¿Í A*STAR ¹ÙÀÌ¿À ¹× ³ª³ë¿¬±¸¼Ò(A*STAR Institute of Bioengineering and Nanotechnology) ¼Ò¼ÓÀÇ Jia Min Chin ¹× µ¿·á ¿¬±¸ÀÚµéÀÌ ¸Å¿ì Á¤±³ÇÑ ¹ö¼¸ ¸ð¾çÀÇ ±Ý¼Ó-À¯±â °áÁ¤ ±¸Á¶¸¦ ÀÌ¿ëÇØ ÃʼҼö¼º(omniphobic) Ç¥¸éÀ» ¸¸µé¾î³¾ ¼ö ÀÖ´Â °£´ÜÇÑ ¹æ¹ýÀ» °³¹ßÇØ È­Á¦°¡ µÇ°í ÀÖ´Ù. 
ÃʼҼö¼º Ç¥¸éÀ» ¸¸µé±â À§ÇÑ ÃÖ±ÙÀÇ ³ë·ÂµéÀº ³»ºÎÀûÀ¸·Î °ø±â ÁÖ¸Ó´Ï(air pocket)¸¦ Áö´Ñ °î¸é ±¸Á¶ ½ºÅ¸ÀÏÀÇ ¹Ì¼¼ Àç·á¸¦ ¸¸µå´Âµ¥ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Ù. ÀÌ·¯ÇÑ ±¸Á¶µéÀº ¿ÀÀÏ¿¡ ÀÇÇØ Á¥´Â ¼ºÁúÀÌ ³·´Ù. ÃÖ±Ù, °³¹ßµÈ º¹ÀâÇÏ°í ³ëµ¿Áý¾àÀûÀÎ ¸®¼Ò±×·¡ÇÇ Á¶ÀÛ±â¼ú(lithographic fabrication technique)ÀÌ ÀÌ·¯ÇÑ Àç·á¸¦ ¸¸µå´Âµ¥ ÇÊ¿äÇÏ´Ù. 

Chin°ú µ¿·á ¿¬±¸ÀÚµéÀº ±Ý¼ÓÀ¯±â±¸Á¶(organic frameworks (MOFs)-źȭ¼ö¼Ò ±â¹ÝÀÇ ¿¬°áÀ» ÅëÇØ ±Ý¼Ó À̿µéÀÌ ´ÙÁß Ãþ ±¸Á¶¹°¿¡ ¿¬°áµÇ¾î ÀÖ´Â È­ÇÕ¹°)¸¦ ÀÌ¿ëÇÔÀ¸·Î½á, ÃʼҼö¼º Ç¥¸é Çʸ§À» ¸¸µé¾î³¾ ¼ö ÀÖ´Â ±â¼úÀ» ¿¬±¸Çß´Ù. ÀÌÀüÀÇ ¿¬±¸ °á°úµéÀº NH2-MIL-53(Al)·Î ¾Ë·ÁÁø MOF¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ¾Ë·ç¹Ì´½ÀÌ ¹Ì¼¼ Å©±â ȤÀº ³ª³ë Å©±âÀÇ ¸·´ë³ª ¹Ù´Ã µîÀ» ¸¸µé¾î³¾ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁØ ¹Ù ÀÖ´Ù. ¿¬±¸ÆÀÀº ¾ÈÁ¤ÀûÀÎ ÇÕ¼º Á¶°ÇÀÌ Àç·á ¹°Áú·ÎºÎÅÍ ¸¹Àº °ø±â ÁָӴϸ¦ Áö´Ñ ¹Ì¼¼ Ç¥¸éÀ» ¸¸µé¾î³»´Âµ¥ Áß¿äÇÏ´Ù°í »ý°¢Çß´Ù. 

ÀÌ·¯ÇÑ »ý°¢À» ÀÔÁõÇϱâ À§ÇØ ¿¬±¸ÀÚµéÀº ÀڽŵéÀÇ MOF Àü±¸Ã¼¸¦ ¾Ë·ç¹Ì´½ »êÈ­¹° ¸·(aluminum oxide membrane)°ú È¥ÇÕ½ÃÄ×À¸¸ç °í¿Â °í¾ÐÀÇ ¾×»ó ¹ÝÀÀÀ» Àû¿ëÇغ¸¾Ò´Ù. ±× °á°ú ¸·ÀÇ ¾çÂÊ ¸é¿¡ ¸ðµÎ ´Ïµé(neddle)ÀÌ °áÇյǾî ÀÖ´Â Àç·á¸éÀ» ¸¸µé¾î³¾ ¼ö ÀÖ¾ú´Ù. ¸¹Àº ³ë·Â ³¡¿¡, ¿¬±¸ÀÚµéÀº Áß¿äÇÑ ´Ü¼­, Áï Àç·á°¡ Áö´Ñ ÃʼҼö¼º ¶§¹®¿¡ ¾×»óÀÇ Ç¥¸é ³¡¿¡ ¶° ÀÖ´Â ¼öÁ¤µÈ ÇüÅÂÀÇ ¸·ÀÌ ¸¸µé¾îÁú ¼ö ÀÖ´Ù´Â »ç½ÇÀ» ¹ß°ßÇÒ ¼ö ÀÖ¾ú´Ù. ¿¬±¸ÀÚµéÀº ¾×»óÀÇ MOF Àü±¸Ã¼¿¡¼­ ¸¶ÀÌÅ©·Î ´ÏµéÀÌ Á¸ÀçÇÏ´Â ¸·À» ¸Å´Þ¾Æ³õÀ½À¸·Î½á ÀÌ·¯ÇÑ Ç÷ÎÆà ȿ°ú(floating effect)¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ ¹ÝÀÀ½Ã°£À» Á¶ÀýÇÔÀ¸·Î½á, ¿¬±¸ÀÚµéÀº ÃʼҼö¼º Ç¥¸éÀÌ ±ä ±æÀÌÀÇ ÅºÈ­¼ö¼Ò ¿ÀÀÏ¿¡ ÀúÇ×À» Áö´Ï°í ÀÖ´Ù´Â »ç½ÇÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. 

ÀÌ¿¡ ´ëÇÑ º¸´Ù ÀÚ¼¼ÇÑ ¿¬±¸ °á°ú´Â ¡°Tan, T. T. Y., Reithofer, M. R., Chen, E. Y., Menon, A. G., Hor, T. S. A., Xu, J. & Chin, J. M. "Tuning omniphobicity via morphological control of metal?organic framework functionalized surfaces." Journal of the American Chemical Society 135, 16272?16275 (2013). dx.doi.org/10.1021/ja407896m¡±À» Âü°íÇϱ⠹ٶõ´Ù. 


±×¸²: ¿¬±¸ÁøÀÌ °³¹ßÇÑ ±Ý¼Ó-À¯±â ¸¶ÀÌÅ©·Î ´Ïµé(metal?organic microneedle) Ç¥¸éÀÇ ÀüÀÚÁÖ»çÇö¹Ì°æ »çÁø 

[Ãâó : KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 4¿ù 15ÀÏ]


[¿ø¹®º¸±â]


Chemical transformation yields surface-bound microstructures that repel oil- and water-based contaminants

Natural surfaces that repel water, such as lotus leaves or butterfly wings, often have a rough, microscale texture that traps air beneath the liquid droplet. By mimicking these biological structures, researchers have developed 'superhydrophobic' coatings that are highly resistant to wetting. One trick unknown to nature, however, is the ability to repel hydrocarbon-based oils that have much lower surface tension than water and tend to spread out rather than bead up.

Jia Min Chin and co-workers from the A*STAR Institute of Materials Research and Engineering and A*STAR Institute of Bioengineering and Nanotechnology in Singapore have now discovered a simple procedure to synthesize 'omniphobic' interfaces that repel both oil and water using intricate, mushroom-shaped, metal–organic crystal frameworks.

Recent efforts toward omniphobic surfaces have focused on producing reentrant microscale textures, which have curved shapes that inherently retain air pockets. These structures prevent oil from wetting the surface and stabilize the beaded droplet state. Currently, complicated and labor-intensive lithographic fabrication techniques are needed to generate such textures.

Chin and co-workers investigated a 'bottom-up' strategy to synthesize omniphobic films using metal–organic frameworks (MOFs)—compounds that connect metal ions into multidimensional structures using hydrocarbon-based linkages. Previous studies have shown that an aluminum-containing MOF, known as NH2-MIL-53(Al), can controllably form micro- and nanoscale rods and needles. The team suspected that suitable synthetic conditions could yield spontaneous needle growth upward from a substrate, forming a micro-rough surface with numerous trapped air pockets.

To achieve this, the researchers mixed their MOF precursor with an aluminum oxide membrane and applied 'hydrothermal' high temperature–high pressure aqueous reaction conditions. This resulted in perpendicularly aligned needles on both sides of the membrane. Next, the team faced the challenge of transforming the needles into curved textures suitable for repelling oil. After many attempts, they spotted an important clue—the modified membranes 'floated' on top of aqueous surfaces due to their superhydrophobic nature.

Chin and her team exploited this floating effect by suspending the microneedle-covered membrane in an aqueous solution of the MOF precursor. Additional MOF growth occurred only on the wetted tips of the needles, expanding the crystalline stems into mushroom-like caps (see image). By controlling the reaction time to generate a targeted cap size, the researchers' omniphobic surface successfully repelled long-chain hydrocarbon oils.

Chin notes that this benchtop, chemical process produces results previously limited to facilities with expensive, high-tech equipment. "Our aim was to develop simple techniques for fabricating interesting structures which are accessible to scientists around the world," she says.

Chemical transformation yields surface-bound microstructures that repel oil- and water-based contaminants

Scanning electron microscopy images reveal how the transformation of a metal–organic microneedle surface (top) into a micromushroom interface (bottom) causes oil droplets to bead up instead of spreading out. Credit: American Chemical Society





¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] Çؼö¿¡¼­ ¿¬·á·Î ÀüȯÇÒ ¼ö ÀÖ´Â ¼ö¼Ò¸¦ »ý»êÇÏ°í ÀÌ»êȭź¼Ò¸¦ ȸ¼öÇÏ´Â ¹æ¹ý
´ÙÀ½±Û [±Û·Î¹úÀÎÆ÷¸ÞÀ̼Ç] °Ç¹°ÀÏüÇü ž籤¹ßÀü À¯¸® ½ÃÀå, 2019³â 27¾ï ´Þ·¯ Àü¸Á
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.