Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2014] [¹Ì±¹] »ï¸²ÀÇ ³ó°æÁö Àüȯ°ú ±âÈÄ º¯È­ÀÇ »ó°ü°ü°è ±Ô¸í
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.09.12 Á¶È¸¼ö 720
ÆÄÀÏ÷ºÎ
[¹Ì±¹] »ï¸²ÀÇ ³ó°æÁö Àüȯ°ú ±âÈÄ º¯È­ÀÇ »ó°ü°ü°è ±Ô¸í

»ï¸²(forests)À» ³ó°æÁö(cropland)·Î ÀüȯÇÏ´Â °ÍÀÌ ´ë±â º¯È­¸¦ Ã˹ßÇÏÁö¸¸, ±âÈÄ ¸ðµ¨Àº ÀÌ·¯ÇÑ »çÇ×À» °í·ÁÇÏÁö ¾Ê°í ÀÖ´Ù. »ï¸²À» ³ó°æÁö·Î ÀüȯÇÏ´Â °ÍÀÌ Áö±¸ ±â¿Â(global temperature)¿¡ ¼ø ³Ã°¢ È¿°ú(net cooling effect)¸¦ °¡Áø´Ù°í »õ·Î¿î ¹Ì±¹ ¿¹ÀÏ ´ëÇÐ ¿¬±¸´Â ¹àÇû´Ù.

Nature Climate Change Àú³Î¿¡ ¹ßÇ¥µÈ ¿¬±¸¿¡¼­ ¿¹ÀÏ ´ëÇÐ F&ES(School of Forestry & Environmental Studies) ¼Ò¼ÓÀÇ Nadine Unger ±³¼ö´Â Áö³­ 150³â µ¿¾È ´ë±Ô¸ð »ï¸² ¼Ò½ÇÀÌ À¯±â¹°¿¡ ÀÇÇØ »ý±ä Èֹ߼º À¯±â È­ÇÕ¹°(BVOCs; biogenic volatile organic compounds)ÀÇ Àü ¼¼°è ¹èÃâÀ» °¨¼Ò½ÃÄ×´Ù°í º¸°íÇß´Ù. BVOCs´Â ´ë·ù±Ç ¿ÀÁ¸, ¸Þź ¹× ¿¡¾î·ÎÁ¹ ÀÔÀÚ µî°ú °°Àº ¼ö¸¹Àº ª°Ô ÀÜ·ùÇÏ´Â ±âÈÄ ¿À¿°¹°ÁúÀÇ ´ë±â ºÐÆ÷(atmospheric distribution)¸¦ Á¦¾îÇÑ´Ù.

º¹ÀâÇÑ ±âÈÄ ¸ðµ¨¸µÀ» ÀÌ¿ëÇÏ¿©, Unger´Â ÁÖ·Î »ï¸²À» ³ó°æÁö·Î ÀüȯÇÔÀ¸·Î½á 1850³âºÎÅÍ 2000³â »çÀÌ BVOC ¹èÃâ¿¡¼­ 30% °¨¼Ò°¡ ¾à 0.1 ¡ÉÀÇ ¼ø Áö±¸ ³Ã°¢(net global cooling)À» »ý¼ºÇß´Ù°í ¹àÇû´Ù. µ¿ÀÏÇÑ ±â°£ µ¿¾È, Áö±¸ ±âÈÄ´Â ÁÖ·Î È­¼® ¿¬·á ÀÌ»êȭź¼Ò ¹èÃâÀÇ Áõ°¡·Î ÀÎÇÏ¿© ¾à 0.6¡É °¡±îÀÌ ¿Â³­È­ÇØÁ³´Ù.

UngerÀÇ ¿¬±¸ °á°ú¿¡ µû¸£¸é, °¨¼ÒÇÏ´Â BVOC ¹èÃâÀÇ ±âÈÄ ¿µÇâÀº ºñ·Ï »ó¹ÝµÈ ¹æ¹ýÀ̶ó°í ÇÏ´õ¶ó°í, Áö±¸ ±â¿Â¿¡ ¿µÇâÀ» ³¢Ä¡´Â °ÍÀ¸·Î ¿À·§µ¿¾È ¾Ë·ÁÁ® ¿Ô´Ù. ¨ç ź¼Ò ÀúÀå(carbon storage)°ú ¨è ¾Ëº£µµ È¿°ú(albedo effect) µî »ï¸²¹úäÀÇ µÎ °¡Áö ´Ù¸¥ °á°ú·Î µ¿ÀÏÇÑ Å©±âÀÌ´Ù. »ï¸² ÀüȯÀ¸·Î ¾ß±âµÈ ÀÒ¾î¹ö¸° ź¼Ò ÀúÀå ¿ë·®(carbon storage capacity)Àº Áö±¸ ¿Â³­È­¸¦ ¾ÇÈ­½ÃŲ´Ù. ±×·¯´Â »çÀÌ, ¾îµÎ¿î »ö»óÀÇ »ï¸²(dark-colored forests)ÀÇ ¼Ò½ÇÀº ¼ÒÀ§ ¾Ëº£µµ È¿°ú¶ó°í ºÒ¸®´Â È¿°ú¸¦ ÅëÇÏ¿© Áõ°¡µÈ ±â¿ÂÀ» »ó¼â½ÃÅ°´Â µ¥ µµ¿òÀ» ÁØ´Ù. ¾Ëº£µµ È¿°ú´Â Áö±¸ÀÇ Ç¥¸é¿¡ ÀÇÇØ ¹Ý»çµÈ º¹»ç·®À» ÀǹÌÇÑ´Ù. ¿¹¸¦ µé¸é, ¹àÀº »ö»óÀÇ µéÆÇÀº ¾îµÎ¿î »ö»óÀÇ »ï¸²º¸´Ù ´õ ¸¹Àº Àϱ¤À» ¹Ý»ç½ÃÄÑ ¿ìÁÖ·Î ¿­À» µÇµ¹·ÁÁØ´Ù.

Unger´Â Áõ°¡µÈ ¾Ëº£µµ¿Í °¨¼ÒµÈ BVOC ¹èÃâÀÇ °áÇÕ È¿°ú°¡ »ï¸² ±â¹ÝÀÇ Åº¼Ò ÀúÀå ¿ë·®ÀÇ ¼Ò½Ç¿¡¼­ ¾ß±âµÈ ¿Â³­È­¸¦ ¿ÏÀüÈ÷ »ó¼â½Ãų ¼ö ÀÖ´Ù°í ¹àÇû´Ù.

»ê¾÷ ¹× ³ó¾÷ Çõ¸í ÀÌÈÄ Àΰ£¿¡ ÀÇÇØ À¯¹ßµÈ ÅäÁö ÇǺ¹ º¯È­´Â ÀÚ¿¬ÀûÀÎ »ï¸²°ú ¸ñÃÊÁö¸¦ Á¦°ÅÇÏ°í »ï¸²°ú ¸ñÃÊÁö¸¦ ³ó°æÁö·Î ´ëüÇß´Ù°í F&ES ¼Ò¼ÓÀÇ ´ë±â È­Çаú Á¶±³¼öÀÎ Unger´Â ¹àÇû´Ù. ±×¸®°í ³ó°æÁö´Â ÀÌ·¯ÇÑ BVOCsÀÇ °­·ÂÇÑ ¹èÃâÀÚ´Â ¾Æ´Ï´Ù. Á¾Á¾ ³ó°æÁö´Â BVOCs¸¦ ÀüÇô ¹èÃâÇÏÁö ¸øÇÑ´Ù°í Unger´Â µ¡ºÙ¿´´Ù.

ÀÌ·¯ÇÑ µÎ °¡Áö ¿äÀÎÀ» Æ÷ÇÔÇÑ Áö±¸-½Ã½ºÅÛ ¸ðµ¨ ½Ã¹Ä·¹À̼ÇÀ» ¼öÇàÇÏÁö ¾Ê°í, ¿¬±¸ÁøÀº Áö±¸ ±âÈÄ¿¡ ´ëÇÑ ¼ø È¿°ú¸¦ ÀüÇô ¾Ë ¼ö ¾ø´Ù. ¿Ö³ÄÇϸé ÀÌ·¯ÇÑ ¹èÃâ¿¡¼­ º¯È­°¡ ¿Â³­È­¸¦ À¯¹ßÇÏ´Â ¿À¿°¹°Áú°ú ³Ã°¢À» À¯¹ßÇÏ´Â ¿À¿°¹°Áú¿¡ ¸ðµÎ ¿µÇâÀ» ³¢Ä¡±â ¶§¹®À̶ó°í ±×³à´Â ÁöÀûÇß´Ù. Unger´Â ¿¬±¸ °á°ú°¡ Áõ°¡µÈ »ï¸² ¼Ò½ÇÀÌ ±âÈÄ º¯È­ À̵æÀ» Á¦°øÇÑ´Ù´Â »ç½Ç º¸´Ù´Â ±âÈÄ º¯È­ÀÇ º¹À⼺À» °­Á¶ÇÏ°í, Àü ¼¼°è¿¡ ´ëÇÑ º¸´Ù ´õ ¿ì¼öÇÑ Æò°¡ÀÇ Á߿伺ÀÌ º¸´Ù ´õ Å« »ï¸² º¸ÀüÀ¸·ÎºÎÅÍ ÇýÅÃÀ» ´©¸°´Ù´Â °ÍÀ» Á¦¾ÈÇÏ°í ÀÖ´Ù.

19¼¼±â Áß¹Ý ÀÌÈÄ, ³ó°æÁö·Î µ¤ÀÎ Áö±¸ÀÇ ºñÀ²Àº 14 %¿¡¼­ 37%·Î 2 ¹è ÀÌ»ó Áõ°¡Çß´Ù. »ï¸²ÀÌ ³ó°æÁö¿Í ¸ñÃÊÁöº¸´Ù BVOC ¹èÃâ¿¡ ÈξÀ ´õ Å« ±â¿©ÀÚÀ̱⠶§¹®¿¡, ÅäÁö »ç¿ë(land use)¿¡¼­ ÀÌ·¯ÇÑ ÀüȯÀº Áö±¸ÀÇ BVOC °ø±Þ¿øÀ» ¾à 30% °¡·® Á¦°ÅÇß´Ù°í Unger´Â ¹àÇû´Ù.

ÀÌ·¯ÇÑ È­ÇÕ¹°ÀÇ ¸ðµÎ°¡ µ¿ÀÏÇÑ ¹æ½ÄÀ¸·Î ´ë±â È­Çп¡ ¿µÇâÀ» ³¢Ä¡´Â °ÍÀº ¾Æ´Ï´Ù. ¿¹¸¦ µé¸é, ¿¡¾î·ÎÁ¹Àº ÀϹÝÀûÀ¸·Î ÅÂ¾ç º¹»ç¸¦ ¿ìÁÖ·Î ¹Ý»ç½ÃÅ°±â ¶§¹®¿¡, Áö±¸ ³Ã°¢¿¡ ±â¿©ÇÑ´Ù. µû¶ó¼­ »ï¸² ¿¡¾î·ÎÁ¹¿¡¼­ 50% °¨ÃàÀº ½ÇÁ¦·Î »ê¾÷Çõ¸í ÀÌÀü ÈξÀ ´õ Å« ¿Â³­È­¸¦ Ã˹ßÇß´Ù.

±×·¯³ª Áö±¸ ¿Â³­È­¿¡ ±â¿©ÇÏ´Â ÀáÀçÀûÀÎ ¿Â½Ç°¡½ºÀÎ ¸Þź°ú ¿ÀÁ¸¿¡¼­ °¨ÃàÀº ¼ø ³Ã°¢ È¿°ú¸¦ Àü´ÞÇÏ´Â µ¥ µµ¿òÀ» ÁØ´Ù. BVOCÀÇ ¹èÃâÀº Áö±¸ ½Ã½ºÅÛÀÇ ÀÚ¿¬ÀûÀÎ ºÎºÐÀ¸·Î °£ÁֵDZ⠶§¹®¿¡, Á¾Á¾ ±âÈÄ ¸ðµ¨¸µ¿¡¼­ °£°úµÈ´Ù°í Unger´Â ¼³¸íÇß´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ ¹èÃâÀº È­¼® ¿¬·á Èֹ߼º À¯±â È­ÇÕ¹°°ú °°Àº Àΰ£ÀÌ »ý¼ºÇÑ ¹èÃ⸸ŭ ¸¹Àº °ü½ÉÀ» ¹ÞÁö ¸øÇÑ´Ù°í ±×³à´Â ¹àÇû´Ù.

ÀÌ·¯ÇÑ ¿µÇâÀº ¶Ç ÀÌÀüÀÇ ±âÈÄ ¸ðµ¨¸µ¿¡¼­ °£°úµÆ´Ù°í ±×³à´Â ¹àÇû´Ù. ¿Ö³ÄÇϸé BVOC ¹èÃâÀÌ »ê¾÷Çõ¸í ÀÌÀü°ú ¿À´Ã³¯ »çÀÌ¿¡ °ÅÀÇ º¯È­ÇÏÁö ¾Ê¾Ò±â ¶§¹®ÀÌ´Ù. ±×·¯³ª Unger ¿¬±¸ÁøÀÌ 2013³â ¹ßÇ¥ÇÑ ³í¹®Àº ÀÌ·¯ÇÑ Èֹ߼º È­ÇÕ¹°ÀÇ ¹èÃâÀÌ ½ÇÁ¦·Î °¨¼ÒÇß´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. ÇÑÆí À¯·´ ¿¬±¸ÁøÀÌ ¼öÇàÇÑ ¿¬±¸ ¿ª½Ã À¯»çÇÑ °á°ú¸¦ »ý¼ºÇß´Ù.

¿ÀÁ¸°ú À¯±â ¿¡¾î·ÎÁ¹ÀÇ º¯È­¿¡¼­ ÃÊ·¡µÇ´Â ¿µÇâÀº ¿Â´ë(temperate zone)¿¡¼­ ƯÈ÷ °­·ÂÇÑ ¹Ý¸é, ¸ÞźÀÇ ¿µÇâÀº º¸´Ù ´õ Àü Áö±¸ÀûÀ¸·Î ºÐÆ÷ÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù°í Unger´Â ¹àÇû´Ù. BVOC ¹èÃâ¿¡ ´ëÇÑ Àü ¼¼°è ±âÈÄ ½Ã½ºÅÛÀÇ ¹Î°¨µµ´Â BVOC ¹èÃâ¿¡ ´ëÇÑ Áö±¸ ±Ô¸ðÀÇ Àå±âÀûÀÎ ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥ÀÇ ±¸ÃàÀÌ Áß¿äÇÏ´Ù°í Á¦¾ÈÇÏ°í ÀÖ´Ù°í Unger´Â ÁöÀûÇß´Ù.

[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 9¿ù 12ÀÏ]

[¿ø¹®º¸±â]

Yale Study Shows How Conversion Of Forests to Cropland Affected Climate

Writing in the journal Nature Climate Change, Professor Nadine Unger of the Yale School of Forestry & Environmental Studies (F&ES) reports that large-scale forest losses during the last 150 years have reduced global emissions of biogenic volatile organic compounds (BVOCs), which control the atmospheric distribution of many short-lived climate pollutants, such as tropospheric ozone, methane, and aerosol particles.
 
Using sophisticated climate modeling, Unger calculated that a 30-percent decline in BVOC emissions between 1850 and 2000, largely through the conversion of forests to cropland, produced a net global cooling of about 0.1 degrees Celsius. During the same period, the global climate warmed by about 0.6 degrees Celsius, mostly due to increases in fossil fuel carbon dioxide emissions.
 
According to her findings, the climate impact of declining BVOC emissions is on the same magnitude as two other consequences of deforestation long known to affect global temperatures, although in opposing ways: carbon storage and the albedo effect. The lost carbon storage capacity caused by forest conversion has exacerbated global warming. Meanwhile, the disappearance of dark-colored forests has also helped offset temperature increases through the so-called albedo effect. (The albedo effect refers to the amount of radiation reflected by the surface of the planet. Light-colored fields, for instance, reflect more light and heat back into space than darker forests.) ¡°Without doing an earth-system model simulation that includes these factors, we can¡¯t really know the net effect on the global climate.¡±
— Nadine UngerUnger says the combined effects of reduced BVOC emissions and increased albedo may have entirely offset the warming caused by the loss of forest-based carbon storage capacity.
 
¡°Land cover changes caused by humans since the industrial and agricultural revolutions have removed natural forests and grasslands and replaced them with croplands,¡± said Unger, an assistant professor of atmospheric chemistry at F&ES. ¡°And croplands are not strong emitters of these BVOCs — often they don¡¯t emit any BVOCs.¡±
 
¡°Without doing an earth-system model simulation that includes these factors, we can¡¯t really know the net effect on the global climate. Because changes in these emissions affect both warming and cooling pollutants,¡± she noted.
 
Unger said the findings do not suggest that increased forest loss provides climate change benefits, but rather underscore the complexity of climate change and the importance of better assessing which parts of the world would benefit from greater forest conservation.
 
Since the mid-19th century, the percentage of the planet covered by cropland has more than doubled, from 14 percent to 37 percent. Since forests are far greater contributors of BVOC emissions than crops and grasslands, this shift in land use has removed about 30 percent of Earth¡¯s BVOC sources, Unger said.
 
Not all of these compounds affect atmospheric chemistry in the same way. Aerosols, for instance, contribute to global ¡°cooling¡± since they generally reflect solar radiation back into space. Therefore, a 50 percent reduction in forest aerosols has actually spurred greater warming since the pre-industrial era.
¡°[These emissions] don¡¯t get as much attention as human-generated emissions... but if we change how much forest cover exists, then there is a human influence on these emissions.¡±
— Nadine UngerHowever, reductions in the potent greenhouse gases methane and ozone — which contribute to global warming — have helped deliver a net cooling effect.
 
These emissions are often ignored in climate modeling because they are perceived as a ¡°natural¡± part of the earth system, explained Unger. ¡°So they don¡¯t get as much attention as human-generated emissions, such as fossil fuel VOCs,¡± she said. ¡°But if we change how much forest cover exists, then there is a human influence on these emissions.¡±
 
These impacts have also been ignored in previous climate modeling, she said, because scientists believed that BVOC emissions had barely changed between the pre-industrial era and today. But a study published last year by Unger  showed that emissions of these volatile compounds have indeed decreased. Studies by European scientists have produced similar results.
 
The impact of changes to ozone and organic aerosols are particularly strong in temperate zones, she said, while methane impacts are more globally distributed.
 
The sensitivity of the global climate system to BVOC emissions suggests the importance of establishing a global-scale long-term monitoring program for BVOC emissions, Unger noted.


¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀϺ»] 2014³â 8¿ù 20ÀÏ È÷·Î½Ã¸¶½Ã¿¡¼­ÀÇ Æø¿ì ¹ß»ý ¿äÀÎ
´ÙÀ½±Û [¹Ì¸®¾È] ¼ö¾ÐÆļâ À§Ä¡¿¡¼­ À̽´°¡ µÇ´Â ¹°ÀÇ Á¸Àç
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.