Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2014] [Ä¥·¹] ½Ç¸®ÄÜ À§¿¡ Çü¼ºµÈ Àΰø ¸âºê·¹ÀÎ
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.09.15 Á¶È¸¼ö 935
ÆÄÀÏ÷ºÎ
[Ä¥·¹] ½Ç¸®ÄÜ À§¿¡ Çü¼ºµÈ Àΰø ¸âºê·¹ÀÎ
 
»ì¾ÆÀÖ´Â À¯±âü¿¡¼­ ¹ß°ßµÇ´Â ¸âºê·¹Àΰú À¯»çÇÑ Àΰø ¸âºê·¹ÀÎÀº ½ÄÇ°ÀÇ ¹ÚÅ׸®¾Æ ¿À¿°¿¡¼­ºÎÅÍ »ç¶÷¿¡°Ô Áúº´À» À¯¹ßÇÏ´Â À¯µ¶ÇÑ ¿À¿°¿øÀ» °¨ÁöÇÏ´Â µ¥±îÁö ³ÐÀº ºÐ¾ß¿¡ Ä¿´Ù¶õ ÀáÀçÀûÀÎ È°¿ë °¡´É¼ºÀ» °¡Áö°í ÀÖ´Ù. À̹ø¿¡ Ä¥·¹ ¿¬±¸ÁøÀº Ãʹڸ·ÀÇ Àΰø ¸âºê·¹ÀÎ ±¸Á¶Ã¼¸¦ °Ç½Ä °øÁ¤À¸·Î ¸¸µé ¼ö ÀÖ´Â »õ·Î¿î ¿¬±¸°á°ú¸¦ ¹ßÇ¥Çß´Ù. ¿¬±¸ÁøÀº ½Ç¸®ÄÜ ±âÆÇ À§¿¡ »ó¾÷ÀûÀ¸·Î ÈçÈ÷ »ç¿ëµÇ´Â µÎ È­Çй°À» ÀÌ¿ëÇÑ °Ç½Ä °øÁ¤À¸·Î Àΰø ¸âºê·¹ÀÎÀ» ÇÕ¼ºÇÏ¿´´Ù.

À̹ø ¿¬±¸´Â ¾×ü ¼Öº¥Æ® È¥ÇÕ¾øÀÌ ÁøÇàµÈ ÃÖÃÊÀÇ Àΰø ¸âºê·¹ÀÎ Á¦ÀÛ °øÁ¤ ±â¼ú¿¡ °üÇÑ °á°úÀÌ´Ù. ½Ç¸®ÄÜ Ç¥¸é À§¿¡ Àΰø ¸âºê·¹ÀÎÀ» Çü¼ºÇÏ´Â »õ·Î¿î °øÁ¤ ±â¼ú·Î ÀÎÇؼ­ ¹ÙÀÌ¿À-½Ç¸®ÄÜ ÀÎÅÍÆäÀ̽º °³¹ß¿¡ ´ëÇÑ Ä¿´Ù¶õ ±â¼ú Áøº¸°¡ ÀÌ·ç¾îÁö°Ô µÇ¾ú´Ù. »ý¹°ÇÐÀû ¼¾¼­ ºÐÀÚ´Â ±âÁ¸ÀÇ ÀüÀÚȸ·Î¿Í ÁýÀûÇÏ¿© ½Ç¸®ÄÜ Ä¨ À§¿¡ ºñ±³Àû Àú·ÅÇÏ°Ô ÇÁ¸°ÆÃµÉ ¼ö ÀÖ´Ù´Â ÀåÁ¡À» °¡Áö°í ÀÖ´Ù. ¡°À̹ø °³³äÀº Àü±âÀû ½ÅÈ£¸¦ ¸âºê·¹ÀÎÀ» ÅëÇؼ­ Àü´ÞÇÏ´Â ¹ÙÀÌ¿À¼¾¼­¸¦ ¸¸µå´Â °Í¡±À̶ó°í À̹ø ¿¬±¸¿¡ Âü¿©ÇÑ Ä¥·¹ °¡Å縯´ëÇÐ(Universidad Católica de Chile)ÀÇ María José RetamalÀº ¼³¸íÇß´Ù.
 
»ý¸í¿¡¼­ ÁöÁú ¸âºê·¹ÀÎÀÇ ¿ªÇÒÀº ¸Å¿ì Áß¿äÇÑ ºÎºÐÀ» Â÷ÁöÇÑ´Ù. ÁöÁú ¸âºê·¹ÀÎÀº DNA ¶Ç´Â ´Ü¹éÁúÀ» ÀÌ·ç´Â ¼¼Æ÷ÀÇ ÁÖ¿äÇÑ ±¸¼º¿ä¼ÒÀÌ´Ù. Áö±¸ »ó¿¡ ¾Ë·ÁÁø ¸ðµç À¯±âü´Â ´Ù±â´É¼ºÀÇ ¸âºê·¹ÀÎÀ» °¡Áö°í ÀÖ´Ù. ¸âºê·¹ÀÎÀº ¼¼Æ÷ ³»ÀÇ °ø°£À» ±¸ºÐÇÏ°í, ÀÌ¿ôÇÏ´Â ¼¼Æ÷¿ÍÀÇ º®À¸·Î Ç¥ÇöµÇ±âµµ ÇÑ´Ù. ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀº ¿©·¯ ±â´ÉÀ» °¡Áö°í ÀÖ´Ù. À¯ÀüÀÚ ¹°ÁúÀ» º¸È£ÇÏ´Â °Í¿¡¼­ºÎÅÍ ¼¼Æ÷ ³» ¿ÜºÎÀÇ Á¶°ÇÀ» ÅëÁ¦ÇÏ´Â ¿ªÇÒÀ» Çϱ⵵ ÇÑ´Ù. ¶ÇÇÑ ¿©·¯ ºÐ¸®µÈ ±â°üÀÇ ±â´ÉÀ» À¯ÁöÇÏ´Â ¿ªÇÒÀ» Çϱ⵵ ÇÑ´Ù. ÀÚ¿¬À» ¸ð¹æÇÑ ÇÕ¼º ¸âºê·¹ÀÎÀº °úÇÐÀڵ鿡°Ô ¸Å¿ì ¸¹Àº °ü½ÉÀ» ¹Þ°í ÀÖ´Ù. ÀÌ´Â ÇÕ¼º ¸âºê·¹ÀÎÀÌ Áúº´À̳ª µ¶¼º ¹°ÁúÀ» °¨ÁöÇϴµ¥ »ç¿ëµÇ´Â ºÐÀÚ¼¾¼­·Î È°¿ëµÉ ¼ö ÀÖ´Â °¡´É¼ºÀ» °¡Áö°í Àֱ⠶§¹®ÀÌ´Ù.
 
¿¬±¸ÁøÀº ½Ç¸®ÄÜÀ» ±â¹ÝÀ¸·Î Çϸ鼭 ¼Öº¥Æ®¸¦ »ç¿ëÇÏÁö ¾Ê´Â Àΰø ¸âºê·¹ÀÎÀ» ÃÖÃÊ·Î ¸¸µå´Âµ¥ ¼º°øÇß´Ù. ¿¬±¸ÁøÀº °¡°ÝÀûÀÎ Ãø¸é¿¡¼­ ÀåÁ¡ÀÌ ÀÖ´Â ½Ç¸®ÄÜÀ» »ç¿ëÇß´Ù. ¶ÇÇÑ ½Ç¸®ÄÜÀº ¼Ò¼ö¼º ¹°Áú·Î ³ÐÀº ¹üÀ§¿¡ »ç¿ëµÇ°í ÀÖ´Ù. ½Ç¸®ÄÜÀÇ ¼Ò¼ö¼º Ư¼ºÀº È­ÇÐÀûÀ¸·Î Á¶ÀýÀÌ °¡´ÉÇÏ¸ç ¸âºê·¹ÀÎÀ» ½Ç¸®ÄÜ ±âÆÇ À§¿¡ Çü¼ºÇϴµ¥ µµ¿òÀÌ µÈ´Ù.
 
¿¬±¸ÁøÀº ½Ç¸®ÄÜ À§¿¡ Å°Åä»êÀ̶ó°í ¾Ë·ÁÁø È­Çй°À» ÁõÂøÇÏ¿´´Ù. Å°Åä»êÀº Á¶°³, ¶ø½ºÅÍ, »õ¿ì µî¿¡¼­ ¹ß°ßµÇ´Â ŰƾÁú¿¡¼­ ÃßÃâµÈ´Ù. Å°Åä»êÀº ³Î¸® »ç¿ëµÇ´Â È­Çй°ÀÌ´Ù. Å°Åä»êÀº ¹°¿¡ Àß ³ìÁö ¾Ê´Â ´Ù°ø¼º ±¸Á¶Ã¼ÀÌ´Ù. ÀÌ·¯ÇÑ ±¸Á¶ÀûÀΠƯ¼ºÀº ¹°À» Àß Æ÷ÇÔÇϴ Ư¼ºÀ» °¡Áø´Ù. DPPC(dipalmitoylphosphatidylcholine)¶ó°í ¾Ë·ÁÁø ÀÎÁöÁú(phospholipid)À» ±× À§¿¡ ´Ù½Ã ÁõÂøÇÑ´Ù. ±¸Á¶Ã¼´Â ½Ç¸®ÄÜ À§¿¡ Å°Åä»êÀÌ ÁõÂøµÇ°í ±× À§¿¡ ÀÎÁöÁúÀÌ ÁõÂøµÈ ¾ÈÁ¤µÈ ´ÙÁßÃþ ±¸Á¶·Î ³ªÅ¸³­´Ù. Çö¹Ì°æ »çÁøÀº Àΰø ¸âºê·¹ÀÎÀÌ ³ÐÀº ¿Âµµ ¹üÀ§¿¡¼­ ¾ÈÁ¤ÀûÀΠƯ¼ºÀ» °¡Áø´Ù´Â °ÍÀ» º¸¿©ÁÖ°í ÀÖ´Ù. ¸âºê·¹ÀÎ ³»ºÎ¿¡ ƯÁ¤ÇÑ ´Ü¹éÁúÀ» ÁÖÀÔÇÏ¿© Ç¥ÁØÈ­ ÀÛ¾÷À» °ÅÄ£´Ù. À̹ø ±â¼úÀº Àΰø ¸âºê·¹ÀÎÀÇ »õ·Î¿î °¡´É¼ºÀ» º¸¿©ÁÖ´Â ³î¶ó¿î °á°ú¶ó°í ¿¬±¸ÁøÀº ¼³¸íÇß´Ù. À̹ø ¿¬±¸´Â The Journal of Chemical Physics¿¡ "Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase"¶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù.
 
±×¸². À¯±â¹°°ú ¹«±â¹°ÀÇ °áÇÕÀ¸·Î ÀÌ·ç¾îÁø »õ·Î¿î Àΰø ¸âºê·¹ÀÎ
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 9¿ù 15ÀÏ]
 
[¿ø¹®º¸±â]

Artificial membranes on silicon

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.
 
 Described in The Journal of Chemical Physics ("Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase"), this is the first time anyone has ever made an artificial membrane without mixing liquid solvents together. And because the new process creates membranes on silicon surfaces, it is a significant step toward creating bio-silicon interfaces, where biological "sensor" molecules can be printed onto cheap silicon chip holding integrated electronic circuits.
 
"Our idea is to create a biosensor that can transmit electrical signals through the membrane," said María José Retamal, a Ph.D. student at Pontificia Universidad Católica de Chile and first author of the paper.
 
Membranes for Technology, as for Life
 
The importance of lipid membranes to life is hard to overstate. They are a principal component of the cell, as fundamental as DNA or proteins, and all known organisms on Earth, from the bittiest bacteria to the biggest blue whales, use membranes in a multitude of ways.
 
They separate distinct spaces within cells and define walls between neighboring cells -- a functional compartmentalization that serves many physiological processes, protecting genetic material, regulating what comes in and out of cells, and maintaining the function of separate organs.
 
 Synthetic membranes that mimic nature are of great interest to science because they offer the possibility of containing membrane proteins -- biological molecules that could be used for detecting toxins, diseases and many other biosensing applications.
 
 Retamal and her colleagues created the first artificial membrane without using solvents on a silicon support base. They chose silicon because of its low cost, wide availability and because its "hydrophobicity" (how much it repels water) can be controlled chemically, allowing them to build membranes on top.
 
 Next they evaporated a chemical known as chitosan onto the silicon. Chitosan is derived from chitin, a sugar found in the shells of certain crustaceans, like lobsters or shrimp. Whole bags of the powder can be bought from chemical companies worldwide. They chose this ingredient for its ability to form a moisturizing matrix. It is insoluble in water, but chitosan is porous, so it is capable of retaining water.
 
Finally they evaporated a phospholipid molecule known as dipalmitoylphosphatidylcholine (DPPC) onto the chitosan-covered silicon substrate and showed that it formed a stable "bilayer," the classic form of a membrane. Spectroscopy showed that these artificial membranes were stable over a wide range of temperatures.
 
More work is needed to standardize the process by which proteins are to be inserted in the membranes, to define the mechanism by which an electrical signal would be transmitted when a protein binds its target and to calibrate how that signal is detected by the underlying circuitry, Retamal said.
 
 "This is a powerful tool," she added. "The idea is that it will be used by the rest of the scientific community in order to improve existing techniques."
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [Áß±¹] ¹ß°³À§, ¡¸¿À¿°¹°Áú ¹èÃâºñ¿ë ¡¼öÇ¥ÁØ Á¶Á¤ µî °ü·Ã ¹®Á¦¿¡ °üÇÑ ÅëÁö¡¹ ¹ßÇ¥
´ÙÀ½±Û [½Ì°¡Æ÷¸£]ÃÖÃÊÀÇ ´Ù±â´É¼º ¹° ¿©°ú ¸âºê·¹Àο¡ Àû¿ëµÈ ³ª³ë±â¼ú
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.