Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2014] [µ¶ÀÏ] È£ÈíÇÏ´Â ¸ð·¡: ºÏÇØ ±âÀú¿¡ »ê¼Ò °ø±ÞÀ» °ËÃâÇÏ´Â »õ·Î¿î ÃøÁ¤ ±â¼ú
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.10.24 Á¶È¸¼ö 812
ÆÄÀÏ÷ºÎ
[µ¶ÀÏ] È£ÈíÇÏ´Â ¸ð·¡: ºÏÇØ ±âÀú¿¡ »ê¼Ò °ø±ÞÀ» °ËÃâÇÏ´Â »õ·Î¿î ÃøÁ¤ ±â¼ú
 
´ë·úºØÀº Åõ°ú¼º ¸ð·¡ ħÀü¹°·Î ¾à 70% °¡·® µ¤¿© ÀÖ´Ù. Åõ°ú¼º ¸ð·¡ ħÀü¹°Àº ±Ø½ÉÇÑ »ê¼Ò, ź¼Ò ¹× ¿µ¾çºÐ µîÀÌ È¸ÀüÇÏ´Â Áß¿äÇÑ Áö¿ªÀ¸·Î ±Ô¸íµÈ ÇÑÆí, Åõ°ú¼º ħÀü¹°¿¡¼­ ÀϾ´Â ±¸¼º¹°ÁöÀÇ ±³È¯Àº ¸íÈ®ÇÏ°Ô ±Ô¸íµÇÁö ¾Ê°í ³²¾Æ ÀÖ´Ù. ºÏÇØ Áß¾ÓÀº ÁÖ·Î Åõ°ú¼º ħÀü¹°·Î ±¸¼ºµÇ¾î ÀÖÀ¸¸ç, Àú»ê¼ÒÁõ(hypoxia)À¸·Î ¹ß´ÞÇÒ À§ÇèÀÌ Áõ°¡ÇÏ°í ÀÖ´Â °ÍÀ¸·Î ¹àÇôÁ³´Ù.

»õ·Î¿î ºÐ¼® ¹æ¹ýÀº ºÏÇØ(North Sea) ±âÀú¿¡¼­ ¸ð·¡·Î ÀÌ·ç¾îÁø Åõ°ú¼º ħÀü¹°(permeable sediment)ÀÌ ¾î¶»°Ô »ê¼Ò¸¦ °ø±Þ¹Þ´ÂÁö Áï, »ê¼Ò ±³È¯(oxygen exchange)À» °áÁ¤ÇÏ´Â ¿äÀÎÀÌ ¹«¾ùÀÎÁö¸¦ óÀ½À¸·Î º¸¿©ÁÖ¾ú´Ù. ´ë»ç ¼Óµµ°¡ ÀÌ·¯ÇÑ À¯ÇüÀÇ ÇØÀú(seabed)¿¡¼­ ƯÈ÷ ³ô°í, ħÀüÀÌ Åõ°ú¼ºÀÌ Àֱ⠶§¹®¿¡, »ê¼Ò ±³È¯ÀÇ ÃøÁ¤Àº ƯÈ÷ º¹ÀâÇÏ´Ù. ¼¼ºÎÀûÀÎ Á¶»ç¿Í µ¶ÀÏ GEOMAR(Helmholtz Centre for Ocean Research Kiel)ÀÌ ÁÖµµÇÏ´Â ¿¬±¸ÆÀÀÌ ±â¼úÇÑ »õ·Î¿î ÃøÁ¤ ±â¼úÀ» ±â¹ÝÀ¸·Î, ¿ªÇÐÀûÀÎ »ýÅÂ°è ³»ºÎÀÇ ¹Ì·¡ º¯È­»Ó ¾Æ´Ï¶ó ÇØÀú¿¡¼­ À¯±â¹°°ú ¿µ¾çºÐÀÇ È¸ÀüÀ²Àº ´õ Àß Æò°¡µÉ ¼ö ÀÖ¾ú´Ù.

ÇØÀú ÇϺδ »ç¸·Àΰ¡? ºñ·Ï ºÏÇØÀÇ Çؼö°¡ 2~3³â¸¶´Ù ±³È¯µÈ´Ù°í ÇÏ´õ¶ó°í, °¨¼ÒÇÏ´Â »ê¼Ò ÇÔ·®ÀÇ Áõ°Å°¡ ÀÖ´Ù. ¸¸¾à ÀÌ·¯ÇÑ ±âüÀÇ ´õ ³·Àº ¾çÀÌ Çؼö¿¡¼­ ¿ëÇصȴٸé, ÇØÀú¿¡¼­ »ý¼ºµÇ´Â À¯±âü´Â ÇØ¾ç »ýÅ°迡¼­ »ý¹°Áö±¸È­ÇÐÀû ¼øȯ°ú ´õ Å« »ý¹°¿¡ ÃÊ·¡ÇÏ´Â ¿µÇâ°ú ÇÔ²² ´õ ÀûÀº ¿¡³ÊÁö¸¦ »ý¼ºÇÏ°Ô µÉ °ÍÀÌ´Ù. ¿µ¾çºÐ, ź¼Ò ¹× »ê¼Ò µîÀÌ ¸Å¿ì Àß ¼øȯµÇ°í ºÏÇØÀÇ 2/3¸¦ ±¸¼ºÇÏ°í ÀÖ´Â Åõ°ú¼º ¸ð·¡ ħÀü¹°¿¡¼­ ½Å¼ÓÇÏ°Ô °øÁ¤À» °ÅÄ¡±â ¶§¹®¿¡, ´ë»ç ¼ÓµµÀÇ ÃøÁ¤Àº Ưº°È÷ ´õ ¾î·Æ´Ù.

»õ·Î¿î ¼ö»ý ¿¡µð »ó°ü°ü°è ±â¹ý(Aquatic Eddy Correlation technique)À» ÀÌ¿ëÇÏ¿©, µ¶ÀÏ GEOMAR, Leibniz Institute of Freshwater Ecology and Inland Fisheries, µ§¸¶Å© ³²ºÎ ´ëÇÐ(University of Southern Denmark), ÄÚºí·£Ã÷ ·£µµ ´ëÇÐ(University of Koblenz-Landau), ½ºÄÚƲ·£µå ÇØ¾ç ¿¬±¸¼Ò(Scottish Marine Institute) ¹× ¿ÀÈĽº ´ëÇÐ(Aarhus University) µîÀÇ ¿¬±¸ÁøÀ¸·Î ±¸¼ºµÈ ¿¬±¸ÆÀÀº »ê¼Ò°¡ ºÏÇØÀÇ ¹Ù´Ú¿¡¼­ ¾î¶»°Ô È帣´ÂÁö¸¦ Áõ¸íÇß´Ù. ¿¬±¸ÁøÀÇ ¹æ¹ý°ú °á°ú´Â Geophysical Research: Oceans Àú³Î¿¡ ¹ßÇ¥µÆ´Ù.

¼ÒÀ§ ¿¡µð »ó°ü°ü°è(Eddy Correlation) ±â¼úÀº ¸î Á¦°ö¹ÌÅÍÀÇ ¿µ¿ª¿¡ °ÉÃÄ ÀÛÀº ³­·ù(turbulence)¸¦ ÅëÇÏ¿© »ê¼ÒÀÇ È帧À» °ËÃâÇÑ´Ù. ÀÌ ±â¼úÀº °ÅÄ£ ÇØÀú À§ ÇؼöÀÇ À¯Ã¼ ¿ªÇÐ(hydrodynamics)°ú Çؼö¿¡ ¼­½ÄÇÏ´Â À¯±âü¿¡ ÀÇÇÑ Ä§Àü¹°ÀÇ È¥ÇÕÀ» ¸ðµÎ °í·ÁÇÑ´Ù°í GEOMAR ¼Ò¼ÓÀÇ ÇØ¾ç »ý¹°ÇÐÀÚÀÎ Peter Linke ¹Ú»ç´Â ¼³¸íÇß´Ù. ÀÌÀüÀÇ ¹æ¹ýµéÀº ´Ü ±â°£ ¶Ç´Â ¹«½ÃµÈ Áß¿äÇÑ º¯¼ö¸¦ °£°úÇß´Ù. ÇöÀç ¿¬±¸ÆÀÀº º¸´Ù ´õ ½ÇÁ¦ÀûÀÎ ±×¸²À» »ý¼ºÇÒ ¼ö ÀÖ´Ù. ¶Ç »õ·Î¿î ¹æ¹ýÀº Á¶°³²®µ¥±â¿Í °°Àº ÀÛÀº »ç¹° ¶Ç´Â ÆĵµÀÇ Çൿ ¶Ç´Â ÇØ·ù¿¡ ÀÇÇØ Çü¼ºµÈ ¹°°áÁ¶Â÷µµ Åõ°ú¼º ħÀü¹°(permeable sediment)¿¡¼­ »ê¼Ò ±³È¯¿¡ ¿µÇâÀ» ³¢Ä¥ ¼ö ÀÖ´Ù´Â »ç½ÇÀ» °í·ÁÇß´Ù.

¾ÆÀÏ·£µå ¿¬±¸ ¼±¹ÚÀÎ CELTIC EXPLORER¸¦ ÀÌ¿ëÇÑ Å½Çè ¿øÁ¤ CE0913¿¡¼­, ¿¬±¸ÆÀÀº ³ë¸£¿þÀÌ ¼ÒÀ¯ÀÇ Tommeliten Áö¿ª ³»¿¡¼­ ¼¼ °¡Áö ´Ù¸¥ µµ±¸¸¦ ´ëüÇϱâ À§ÇÏ¿© ¼öÁß ·Îº¿ ROV KIEL 6000À» »ç¿ëÇß´Ù. µÎ °³ÀÇ ¿¡µð »ó°ü°ü°è Âø·ú¼±(Eddy Correlation Lander)Àº ¼¼ °¡Áö Á¶·ù ¼øȯ¿¡ ´ëÇÑ »ê¼Ò È帧ÀÇ °­µµ¸¦ ±â·ÏÇß´Ù. ħÀü¹°¿¡¼­ »ê¼ÒÀÇ ºÐÆ÷¿¡ °üÇÑ Á¤º¸´Â »ê¼Ò ¼¾¼­¸¦ ±¸ºñÇÏ°í ¸î ¹ÌÅ͸¦ Èê·¯°¡´Â ÇØÀú °üÃø±âÁöÀΠŽ»ç Âø·ú¼±(Profiler Lander)À» ÀÌ¿ëÇÏ¿© ¼öÁýµÆ´Ù. ÇØÀú è¹ö(Benthic chamber)´Â ħÀü¹° 314 Á¦°ö¼¾Æ¼¹ÌÅ͸¦ °Ý¸®ÇÏ¿© ħÀü¹°¿¡¼­ »ê¼Ò ¼Òºñ¸¦ °áÁ¤Çϱâ À§ÇÏ¿© 24½Ã°£¿¡ °ÉÃÄ Çؼö·ÎºÎÅÍ ½Ã·á¸¦ ¼ö°ÅÇß´Ù.

¿¬±¸ÁøÀº ÇöÀå ¸¶ÀÌÅ©·ÎŽ»ç(microprofiles), ÇØÀú è¹ö ¹× ¼ö»ý ¿¡µð »ó°ü°ü°è µîÀ» °áÇÕÇÏ¿© ºÏÇØ Åõ°ú¼º ħÀü¹°¿¡ ´ëÇÑ ÇØÀúÀÇ »ê¼Ò ±³È¯À» Á¶»çÇß´Ù. Á¶¼ö¿¡ ÀÇÇÑ ÀúÃþ·ù(tidal bottom current)°¡ ¡­3 mm¿¡¼­ 8 mm¿¡ À̸£´Â ´Ù¾çÇÑ Ä§Àü »ê¼Ò ħÅõ ±íÀ̸¦ ÃßÁøÇßÀ¸¸ç, µ¿½Ã¿¡ ¹ß»ýÇÏ´Â ³­·ù·Î ÃßÁøµÈ ÇØÀú ħÀü¹°ÀÇ »ê¼Ò Èí¼ö´Â 25¹èÀÇ º¯È­¸¦ ³ªÅ¸³Â´Ù. »ê¼Ò È帧°ú °¡º¯¼ºÀÌ ÇØÀú ³­·ù¿Í ħÀü¹° ±â°ø Çؼö ¼øȯ »çÀÌÀÇ °ü°è¸¦ ³ªÅ¸³»´Â ´Ü¼øÇÑ 1-D ¸ðµ¨À» ÀÌ¿ëÇÏ¿© ÀçÇöµÆ´Ù.

³ôÀº »ê¼Ò È帧 °¡º¯¼ºÀº º¸´Ù ´õ ±íÀº ħÀü¹° »ê¼Ò ħÅõ ±íÀ̸¦ ¹ß»ý½ÃÄ×À¸¸ç, ³ôÀº ¼Óµµ µ¿¾È »ê¼Ò ÀúÀåÀÌ Áõ°¡µÆ´Ù. ÀÌ ¿¬±¸´Â ÇØÀú À¯Ã¼ ¿ªÇÐ(benthic hydrodynamics), ħÀü¹° Åõ°ú¼º(sediment permeability) ¹× ±â°ø ¹° »êȭȯ¿ø Áøµ¿(pore water redox oscillation)ÀÌ ¸ðµÎ ¹ÐÁ¢ÇÏ°Ô ¿¬°áµÇ¾î ÀÖÀ¸¸ç, »ê¼Ò ÀÌ¿ëµµ(oxygen availability)¸¦ °áÁ¤ÇÏ´Â Áß¿äÇÑ º¯¼ö¶ó´Â °ÍÀ» ¹àÇô³Â´Ù.

¿¡µð »ó°ü°ü°è ±â¼ú°ú ÀüÅëÀûÀÎ µµ±¸ÀÇ °áÇÕÀº Çؼö¿Í ÇϺο¡ Àִ ħÀü¹° »çÀÌ¿¡ ¹°ÁúÀÇ ±³È¯ ¿ªÇп¡ ´ëÇÑ »õ·Î¿î ½Ã°¢À» Á¦°øÇÑ´Ù. ´Ù¾çÇÑ ¿äÀÎÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â »ê¼ÒÀÇ ½Ã±â¿Í ¾çÀ» °áÁ¤ÇÑ´Ù. ÇØ·ù°¡ ¸ð·¡·Î ÀÌ·ç¾îÁø ħÀü¹°¿¡ »ê¼Ò¸¦ Á¦°øÇÒ »Ó ¾Æ´Ï¶ó, ÀÛÀº ½ÉÇØ Àú¼­»ý¹°(benthic organisms)À» È®º¸ÇÏ´Â ÇØÀúÀÇ ¼Ò±Ô¸ð ÁöÇüÀº ź¼Ò¿Í ´Ù¸¥ ¿µ¾çºÐÀ» ó¸®ÇÒ ¼ö ÀÖ´Ù. Á¾¼Ó °ü°è ¿ª½Ã Ưº°ÇÑ ¹æ¹ýÀ» ÀÌ¿ëÇؼ­¸¸ Æǵ¶ÇÒ ¼ö ÀÖÀ» ¸¸Å­ º¹ÀâÇÏ´Ù°í Linke ¹Ú»ç´Â ¿ä¾àÇß´Ù. µû¶ó¼­ ¸ðµ¨ °è»ê»Ó ¾Æ´Ï¶ó ÇØÀú¿¡ ´ëÇÑ °æ°è¿Í ¼öü¿¡¼­ ¼¼ºÎÀûÀÎ ÃøÁ¤Àº ±âº»ÀûÀÎ ±â´ÉÀ» ÀÌÇØÇϱâ À§ÇÏ¿© ÇʼöÀûÀ̸ç, Àç·áÀÇ ¼øȯ¿¡¼­ ¹ß»ýÇÏ´Â ¹Ì·¡ º¯È­¸¦ ´õ Àß ¿¹ÃøÇÒ ¼ö ÀÖ°Ô ÇØÁØ´Ù. ¿¹¸¦ µé¸é, »ó¿ë ¹æ¹ýÀ» ÀÌ¿ëÇÏ¿©, ¿ì¸®´Â ´õ ÀûÀº ¾çÀÇ ¹° À̵¿ÀÌ ÀϾ°í ´õ ÀûÀº »ê¼Ò°¡ µµÀԵǴ ±â°£ µ¿¾È ÇØ·ù¿¡ ÀÇÇØ ÃÊ·¡µÇ´Â Çæ°Å¿öÁø ¸ð·¡ ħÀü¹°ÀÌ »ê¼Ò¸¦ ÀúÀåÇÑ´Ù´Â °ÍÀ» È®ÀÎÇÒ ¼ö ¾ø¾ú´Ù°í Linke ¹Ú»ç´Â ¹àÇû´Ù.
 
[Ãâó =  KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 10¿ù 24ÀÏ]
[¿ø¹®º¸±â]

Breathing sand: New measurement technique detects oxygen supply to bottom of North Sea

New analytical methods show for the first time, how the permeable, sandy sediment at the bottom of the North Sea is supplied with oxygen and which factors determine the exchange. Because the metabolic rate is particularly high in this type of seabed, and the sediments are permeable, measurements are particularly complicated. Based on the detailed investigation and new measurement technology described by a research team led by GEOMAR Helmholtz Centre for Ocean Research Kiel, the turnover of organic matter and nutrients at the sea floor as well as future changes within the dynamic ecosystem can be better assessed.

A desert at the bottom of the sea? Although the waters of the North Sea exchange about every two to three years, there is evidence of decreasing oxygen content. If lower amounts of this gas are dissolved in seawater, organisms on and in the seabed produce less energy -- with implications for larger creatures and the biogeochemical cycling in the marine ecosystem. Since nutrients, carbon and oxygen circulate very well and are processed quickly in the permeable, sandy sediments that make up two-thirds of the North Sea, measurements of metabolic rates are especially difficult here. Using the new Aquatic Eddy Correlation technique, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel, Leibniz Institute of Freshwater Ecology and Inland Fisheries, the University of Southern Denmark, the University of Koblenz-Landau, the Scottish Marine Institute and Aarhus University were able to demonstrate how oxygen flows at the ground of the North Sea. Their methods and results are presented in the Journal of Geophysical Research: Oceans.

"The so-called 'Eddy Correlation' technique detects the flow of oxygen through these small turbulences over an area of several square meters. It considers both the mixing of sediments by organisms living in it and the hydrodynamics of the water above the rough sea floor," Dr. Peter Linke, a marine biologist at GEOMAR, explains. "Previous methods overlooked only short periods or disregarded important parameters. Now we can create a more realistic picture." The new method also takes into account the fact that even small objects such as shells or ripples shaped by wave action or currents are able to impact the oxygen exchange in permeable sediments.

On the expedition CE0913 with the Irish research vessel CELTIC EXPLORER, scientists used the underwater robot ROV KIEL 6000 to place three different instruments within the "Tommeliten" area belonging to Norway: Two "Eddy Correlation Landers" recorded the strength of oxygen fluxes over three tidal cycles. Information about the distribution of oxygen in the sediment was collected with a "Profiler Lander," a seafloor observatory with oxygen sensors and flow meters. A "Benthic chamber" isolated 314 square centimetres of sediment and took samples from the overlying water over a period of 24 hours to determine the oxygen consumption of the sediment.

"The combination of traditional tools with the 'Eddy Correlation' technique has given us new insights into the dynamics of the exchange of substances between the sea water and the underlying sediment. A variety of factors determine the timing and amount of oxygen available. Currents that provide the sandy sediment with oxygen, but also the small-scale morphology of the seafloor, ensure that small benthic organisms are able to process carbon or other nutrients. The dependencies are so complex that they can be decrypted only by using special methods," Dr. Linke summarizes. Therefore, detailed measurements in the water column and at the boundary to the seafloor as well as model calculations are absolutely necessary to understand basic functions and better estimate future changes in the cycle of materials.

"With conventional methods, for example, we would never have been able to find that the loose sandy sediment stores oxygen brought in by the currents for periods of less water movement and less oxygen introduction."
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [Àεµ] ´ã¼öÈ­ Ç÷£Æ®¿¡ ´ë¿ë·® Á¤¹Ð¿©°ú ±â¼ú µµÀÔ
´ÙÀ½±Û [¹Ì±¹] ¼ö¾ÐÆļâ¹ýÀÌ ÁöÁøÀ» ÀÏÀ¸Å²´Ù?
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.