Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2014] [¹Ì±¹] ÇØ¾ç »ê¼ºÈ­°¡ »êÈ£ ºÎ½ÄÀ» Áõ°¡ÇÑ´Ù´Â »ç½ÇÀ» ±Ô¸íÇÑ CT ½ºÄµ
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.11.28 Á¶È¸¼ö 1160
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ÇØ¾ç »ê¼ºÈ­°¡ »êÈ£ ºÎ½ÄÀ» Áõ°¡ÇÑ´Ù´Â »ç½ÇÀ» ±Ô¸íÇÑ CT ½ºÄµ
 
»êÈ£ÃÊ(coral reefs)´Â ¾ÏÃÊ(reefs) ±¸Ãà°ú ºØ±« »çÀÌÀÇ ±ÕÇüÀ» À¯ÁöÇÑ´Ù. »êÈ£°¡ ¼ºÀåÇÒ ¶§, »êÈ£´Â ¾î·ù¿Í ´Ù¸¥ ¾ÏÃÊ À¯±âü¿¡ ¼­½ÄÁö¸¦ Á¦°øÇÏ´Â º¹ÀâÇÑ Åº»êÄ®½·(calcium carbonate) ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇÑ´Ù. µ¿½Ã¿¡ ºñ´Ãµ¼·ù ¹°°í±â¿Í °°Àº »ý¹°ºÎ½ÄÀÚ(bioeroder)¿Í ±¸¸ÛÀ» ¶Õ´Â ÇØ¾ç ¿¬Ãæ·ù´Â ¾ÏÃÊ ±¸Á¶¸¦ µ¹¹«´õ±â¿Í Çغ¯À» dz¿ä·Ó°Ô ÇÏ´Â ¸ð·¡·Î ºÐÇØÇÑ´Ù. ¾ÏÃÊ°¡ Áö¼ÓµÇ±â À§ÇÏ¿© ¾ÏÃÊ ±¸ÃàÀÇ ¼Óµµ´Â ¾ÏÃÊ ºØ±«¸¦ ÃÊ°úÇؾ߸¸ ÇÑ´Ù.

ÀÌ·¯ÇÑ ±ÕÇüÀº ÇØ¾ç »ê¼ºÈ­(°¨¼ÒÇÏ´Â Çؾç pH)¸¦ À¯¹ßÇÏ´Â Áõ°¡µÈ ´ë±â Áß ÀÌ»êȭź¼Ò(carbon dioxide)¿¡ ÀÇÇØ À§ÇùÀ» ¹Þ´Â´Ù. ÀÌÀü ¿¬±¸´Â ÁÖ·Î »êÈ£ÃÊ ¼ºÀåÀÇ ÇØ¾ç »ê¼ºÈ­(ocean acidification)ÀÇ ºÎÁ¤ÀûÀÎ ¿µÇâ¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú´Ù. ±×·¯³ª ¹Ì±¹ ÇÏ¿ÍÀÌ ´ëÇÐ(UHM; University of Hawai`i – Mānoa) »êÇÏ HIMB(Hawai`i Institute of Marine Biology) ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀÌ ¼öÇàÇÑ »õ·Î¿î ¿¬±¸´Â º¸´Ù ´õ ³·¾ÆÁø Çؾç pH°¡ º¯È­ÇÏ´Â ±âÈÄ¿¡¼­ »êÈ£ÃÊ¿¡ ´ëÇÑ ÀÌÁß°íÀÎ ¾ÏÃÊ ºØ±«(reef breakdown)¸¦ °­È­ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇß´Ù.

»êÈ£ÃÊ´Â ºÎÂø-ºÎ½Ä ±ÕÇü(accretion-erosion balance)À» Áö¼Ó½ÃÅ°°í, ÀÎÀ§ÀûÀÎ ÀÌ»êȭź¼Ò ¹èÃâÀÇ °á°ú·Î ¹ß»ýÇÏ´Â ÇØ¾ç »ê¼ºÈ­´Â ¼ø ¾ÏÃÊ ºÎ½ÄÀ» ÁøÇà½ÃÅ°µµ·Ï ÀÌ·¯ÇÑ ±ÕÇüÀÌ À̵¿Çϵµ·Ï À§ÇùÇÏ°í ÀÖ´Ù. »êÈ£¿Í ¼®È¸È­µÈ Á¶·ù´Â ÁÖ·Î ¾ÏÃÊ ºÎÂø¿¡ Ã¥ÀÓÀÌ ÀÖÀ¸¸ç ÇØ¾ç »ê¼ºÈ­¿Í °ü·ÃµÈ ȯ°æ º¯È­¿¡ Ãë¾àÇÏ´Ù. ±×·¯³ª ¾ÏÃÊ ºÎ½Ä¿¡ ´ëÇÑ º¸´Ù ´õ ³·Àº pHÀÇ Á÷Á¢ÀûÀÎ È¿°ú´Â ´ú °ü½ÉÀÌ ÁýÁßµÆÀ¸¸ç, ƯÈ÷ »ý¹° ºÎ½ÄÀÇ ÃßÁøÀÚ¿Í ÀÚ¿¬ÀûÀÎ °¡º¯¼º¿¡ °üÁ¡Àº °ÅÀÇ Á¶¸íµÇÁö ¾Ê¾Ò´Ù.

ÀÌ ¿¬±¸´Â »êÈ£ °ñ°ÝÀÇ ½ÇÇèÀûÀÎ ºí·ÏÀ» ÀÌ¿ëÇÏ¿© ÀÚ¿¬ÀûÀΠȯ°æ ±¸¹è Ư¼ºÀÌ Àß ±Ô¸íµÈ ÇÏ¿ÍÀÌ Kāne¡®ohe¸¸À» µû¶ó ¾ÏÃÊ ºÎÂø°ú ºÎ½Ä »çÀÌÀÇ ±ÕÇüÀ» Á¶»çÇß´Ù. ¼ø ºÎÂø°ú ºÎ½ÄÀ» Á¤·®È­Çϱâ À§ÇÏ¿© Àü°ú ÈÄÀÇ microCT(micro-computed tomography) ½ºÄµÀ» ºñ±³ÇÏ¿´À¸¸ç, ¿¬±¸ÁøÀº ÀÌ ¿¬±¸ÀÇ ÀÛÀº °ø°£Àû ±Ô¸ð(¼ö¹é ¹ÌÅÍ)¿¡¼­ pH°¡ ÀÌÀüÀÇ ¿¬±¸¿¡¼­ Á¦¾ÈµÆ´ø ÇؾÈÀ¸·ÎºÎÅÍÀÇ °Å¸®, ÀÚ¿ø ÀÌ¿ë °¡´Éµµ, ±â¿Â ¹× ±íÀÌ µîÀ» Æ÷ÇÔÇÑ ´Ù¸¥ ȯ°æ ÃßÁøÀÚ º¸´Ù ºÎÂø-ºÎ½Ä ±ÕÇüÀ» ´õ Àß ¿¹ÃøÇÑ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù.

»ý¹° ºÎ½Ä(bioerosion)À» ÃøÁ¤Çϱâ À§ÇÏ¿©, ¿¬±¸ÁøÀº 1³â µ¿¾È »êÈ£ À§¿¡ ź»êÄ®½·ÀÇ ÀÛÀº µ¢¾î¸®¸¦ ¹èÄ¡Çß´Ù. ÀüÅëÀûÀ¸·Î ÀÌ·¯ÇÑ µ¢¾î¸®´Â ¾ÏÃÊ À§¿¡ ¹èÄ¡µÇ±â Àü ÈÄ ¹«°Ô°¡ ÃøÁ¤µÈ´Ù. ±×·¯³ª HIMB ¿¬±¸ÁøÀº °¢°¢ÀÇ µ¢¾î¸®ÀÇ ÀüÈÄ¿¡ ´ëÇÑ 3-D À̹ÌÁö¸¦ »ý¼ºÇϱâ À§ÇÏ¿© °íºÐÇØ´É CT ½ºÄµÀÎ microCT¸¦ ÀÌ¿ëÇß´Ù. ÀÌ ¿¬±¸ÀÇ ÁÖÀúÀÚÀ̸ç, HIMB ¹Ú»ç °úÁ¤ ÇлýÀÎ Nyssa Silbiger´Â ÀÌ·¯ÇÑ »õ·Î¿î ±â¼úÀÌ º¸´Ù ´õ Á¤È®ÇÑ ºÎ½Ä ¼Óµµ(erosion rate)¿Í ºÎÂø ¼Óµµ(accretion rate)¸¦ Á¦°øÇÑ´Ù°í ¹àÇû´Ù.

¿¬±¸ÁøÀº »êÈ£ÃÊ¿¡¼­ pHÀÇ ÀÚ¿¬ÀûÀÎ °¡º¯¼ºÀÇ ÀåÁ¡À» ÃëÇϱâ À§ÇÏ¿©, ÇÏ¿ÍÀÌ Kāne`ohe¸¸¿¡ ¼­½ÄÇÏ´Â ¾èÀº »êÈ£ÃÊ À§¿¡ 100-ft ´Ü¸éÀ» µû¶ó »ý¹° ºÎ½Ä µ¢¾î¸®¸¦ ¹èÄ¡Çß´Ù. ¿¬±¸´Â pHÀÇ ¿µÇâ, ÀÚ¿ø ÀÌ¿ë °¡´Éµµ, ¿Âµµ, ÇؾÈÀ¸·ÎºÎÅÍ °Å¸® ¹× ºÎÂø-ºÎ½Ä ±ÕÇü¿¡ ´ëÇÑ ±íÀÌ µîÀ» ºñ±³Çß´Ù. ¾ÏÃÊ´Â º¸´Ù ´õ »ê¼º Çؼö¿¡¼­ ´õ ³ôÀº ºÎ½Ä ¼Óµµ·Î À̵¿Çß´Ù. ÀÌ·¯ÇÑ Á¶°ÇÀº ´ÙÀ½ ¼¼±â ±âÈÄ º¯È­¿¡ °ÉÃÄ º¸´Ù ´õ ÀϹÝÈ­µÉ °ÍÀÌ´Ù.

¶Ç ÀÌ ¿¬±¸´Â »êÈ£ÃÊ¿¡ ´ëÇÑ ¿¬¾È Çؾç È­Çп¡¼­ ¹Ì¼¼ÇÑ ±Ô¸ðÀÇ º¯È­ÀÇ ¿µÇâÀ» Á¶¸íÇß´Ù. ±âÈÄ º¯È­¿¡ °üÇÑ Á¤ºÎ °£ ÇùÀÇü(IPCC; International Panel on Climate Change)ÀÇ ÇöÀç ¸ðµ¨Àº ´ë¾ç¿¡ ´ëÇÑ pH¿¡¼­ÀÇ º¯È­¸¦ ¿¹ÃøÇßÁö¸¸, ÀÌ·¯ÇÑ ¿¹ÃøÀÌ ´ë´ÜÈ÷ °¡º¯ÀûÀÎ ¿¬¾È »ýÅ°谡 Æ÷ÇԵǾî ÀÖ´Â »êÈ£ÃÊ¿¡ ´ëÇÏ¿©´Â ¹®Á¦°¡ µÉ ¼ÒÁö°¡ ÀÖ´Ù. ÀÌ ¿¬±¸´Â ªÀº °Å¸®¿¡ °ÉÃÄ ÀÏÀÏ °¡º¯¼º°ú Çؾç pH¿¡¼­ ºñ¾àÀûÀÎ Â÷À̸¦ È®ÀÎÇß´Ù.

ȯ°æ¿¡¼­ ÀÛÀº ±Ô¸ðÀÇ º¯È­°¡ »ýÅÂ°è ¼öÁØÀÇ ¾ÏÃÊ °øÁ¤¿¡ ¿µÇâÀ» ³¢Ä¥ ¼ö ÀÖ´Ù´Â °ÍÀº ³î¶ó¿î ¹ß°ßÀ̶ó°í Silbiger´Â ¹àÇû´Ù. ¿¬±¸ÁøÀÌ ¹ÌÅÍ ´ÜÀ§¿¡ ´ëÇÏ¿© pH º¯È­¸¦ °üÂûÇßÀ¸¸ç, ÀÌ·¯ÇÑ ÀÛÀº pH º¯È­°¡ ¾ÏÃÊ ºÎÂø-ºÎ½Ä(reef accretion-erosion)¿¡¼­ À¯ÇüÀ» À¯¹ßÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» È®ÀÎÇß´Ù°í Silbiger´Â ¹àÇû´Ù.

Silbiger¿Í µ¿·á ¿¬±¸ÁøÀº microCT ½ºÄµ(microCT scan)À¸·ÎºÎÅÍ ÀÌ·¯ÇÑ »ç½ÇÀ» È®ÀÎÇÒ ¼ö ÀÖ¾úÀ¸¸ç, Àü°ú ÈÄ microCT ½ºÄµÀÌ »êÈ£ÃÊ¿¡ ´ëÇÑ ºÎÂø-ºÎ½ÄÀ» ÃøÁ¤ÇÏ´Â µ¥ ÃÖÃÊ·Î »ç¿ëµÆ´Ù. ÁøÇàµÇ°í ÀÖ´Â ¿¬±¸¿¡¼­, ¿¬±¸ÁøÀº ºÎÂø°ú ºÎ½ÄÀÇ Â÷À̸¦ ±¸ºÐÇÏ°í, ƯÁ¤ »ý¹°ºÎ½ÄÀÚ Áý´Ü(Áï, ÇØ¾ç ¿¬Ãæ·ù·ÎºÎÅÍ À¯¹ßµÈ ±¸¸í ´ë »ý¹°ºÎ½Ä ½ºÆÝÁö)À¸·ÎºÎÅÍ ºÎ½Ä ÈçÀûÀ» ¼±º°Çϱâ À§ÇÏ¿© ÀÌ·¯ÇÑ ±â¼úÀ» ÀÌ¿ëÇÏ°í ÀÖ´Ù. ¶Ç ¿¬±¸ÁøÀº ÇÏ¿ÍÀÌ ±ºµµÀÇ ÈξÀ ´õ ³ÐÀº Áö¿ª¿¡ °ÉÃÄ ºÎÂø-ºÎ½Ä ±ÕÇüÀ» ÃßÁøÇÏ´Â ¿äÀÎÀ» Á¶»çÇϴµ¥ ÀÌ ±â¼úÀ» ÀÌ¿ëÇÏ°í ÀÖ´Ù.

±×¸²1> ÇÏ¿ÍÀÌ Kāne`ohe¸¸¿¡ 1³â µ¿¾È ¹èÄ¡ µÈ ÈÄ ½ÇÇèÀûÀÎ »êÈ£ ºí·ÏÀÇ ¹Û(»óÃþ)°ú ³»ºÎ(ÇÏÃþ)ÀÇ ¥ìCT ½ºÄµ À̹ÌÁö. »ý¹° ºÎ½ÄÀÇ ÈçÀûÀÌ ºí·ÏÀÇ ³»ºÎ¿¡¼­ È®ÀεȴÙ.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 11¿ù 28ÀÏ]

[¿ø¹®º¸±â]

CT scans of coral skeletons reveal ocean acidity increases reef erosion

Coral reefs persist in a balance between reef construction and reef breakdown. As corals grow, they construct the complex calcium carbonate framework that provides habitat for fish and other reef organisms. Simultaneously, bioeroders, such as parrotfish and boring marine worms, breakdown the reef structure into rubble and the sand that nourishes our beaches. For reefs to persist, rates of reef construction must exceed reef breakdown. This balance is threatened by increasing atmospheric carbon dioxide, which causes ocean acidification (decreasing ocean pH). Prior research has largely focused on the negative impacts of ocean acidification on reef growth, but new research this week from scientists at the Hawai'i Institute of Marine Biology (HIMB), based at the University of Hawai'i - Mānoa (UHM), demonstrates that lower ocean pH also enhances reef breakdown: a double-whammy for coral reefs in a changing climate.

To measure bioerosion, researchers deployed small blocks of (dead coral skeleton) onto the reef for one year. Traditionally, these blocks are weighed before and after deployment on the reef; however, HIMB scientists used microCT (a high-resolution CT scan) to create before and after 3-D images of each block. According to Nyssa Silbiger, lead author of the study and doctoral candidate at HIMB, this novel technique provides a more accurate measurement of accretion and erosion rates.

The researchers placed the bioerosion blocks along a 100-ft transect on shallow coral reef in Kāne'ohe Bay, Hawai'i, taking advantage of natural variability of pH in coastal reefs. The study compared the influence of pH, resource availability, temperature, distance from shore, and depth on accretion-erosion balance. Among all measured variables, pH was the strongest predictor of accretion-erosion. Reefs shifted towards higher rates of erosion in more acidic water - a condition that will become increasingly common over the next century of climate change.
 
This study also highlights the impact of fine-scale variation in coastal chemistry on coral reefs. Current models from the International Panel on Climate Change (IPCC) predict changes in pH for the open ocean, but these predictions are problematic for coral reefs, which are embedded in highly variable coastal ecosystems. The study found dramatic differences in ocean pH and in the daily variability of pH across a short distance.
 
"It was surprising to discover that small-scale changes in the environment can influence ecosystem-level reef processes," said Silbiger. "We saw changes in pH on the order of meters and those small pH changes drove the patterns in accretion-erosion."
 
Silbiger and colleagues are learning all they can from the microCT scans, as this is the first time before-and-after microCT scans were used as a measure of accretion-erosion on . In ongoing work, they are using this technology to distinguish between accretion and erosion and to single out erosion scars from specific bioeroder groups (e.g., holes from boring worms versus bioeroding sponges). The researchers are also using this technology to investigate the drivers of the accretion-erosion balance over the much larger area of the Hawaiian Archipelago.
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] ³²±Ø ÇغùÀÇ 3D À̹ÌÁö¸¦ ÃÖÃÊ·Î Á¦°øÇÑ ¹«ÀÎ ¼öÁß Â÷·®
´ÙÀ½±Û [ÀϺ»] ¼¶¿¡¼­ Àç»ý¿¡³ÊÁö¿Í ÃàÀüÁö¿¡ ÀÇÇÑ Àü·Â°ø±Þ
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.