Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2015] [¿µ±¹] ÇØ¾ç ½Ã¾Æ³ë¹ÚÅ׸®¾ÆÀÇ ÅºÈ­¼ö¼Ò ¼øȯ ÃßÁ¤
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.10.12 Á¶È¸¼ö 501
ÆÄÀÏ÷ºÎ
[¿µ±¹] ÇØ¾ç ½Ã¾Æ³ë¹ÚÅ׸®¾ÆÀÇ ÅºÈ­¼ö¼Ò ¼øȯ ÃßÁ¤
 
¿µ±¹ ÄÉÀӺ긮Áö ´ëÇÐ(University of Cambridge)ÀÌ ÁÖµµÇÏ´Â ±¹Á¦ ¿¬±¸ÆÀÀº ±¤ÇÕ¼º ÇØ¾ç ½Ã¾Æ³ë¹ÚÅ׸®¾Æ(photosynthetic marine cyanobacteria)°¡ Çؾ翡¼­ ¸Å³â ¾öû³­ ¾çÀÇ ÅºÈ­¼ö¼Ò¸¦ »ý¼ºÇÏ´Â °ÍÀ¸·Î ÃßÁ¤Çß´Ù. ÇØ¾ç ½Ã¾Æ³ë¹ÚÅ׸®¾Æ´Â źȭ¼ö¼Ò¸¦ ¸ÔÀÌ·Î ¼·ÃëÇÏ´Â ¶Ç ´Ù¸¥ ¹ÚÅ׸®¾Æ °³Ã¼ÀÇ ¼­½ÄÀ» ÁöÅÊÇØ ÁØ´Ù.

ÀÌ ¿¬±¸´Â PNAS(Proceedings of the National Academy of Sciences)¿¡ ¹ßÇ¥µÆÀ¸¸ç, ¿¬±¸ÆÀÀº ½ÇÇè½Ç¿¡¼­ ¼ºÀåÇÑ ½Ã¾Æ³ë¹ÚÅ׸®¾Æ¿¡¼­ ¸¹Àº ¾çÀÇ ÅºÈ­¼ö¼Ò¸¦ ÃøÁ¤ÇÏ¿© Çؾ翡¼­ »ý¼ºµÈ ¾çÀ» ÃßÁ¤ÇÏ´Â ÀÚ·á·Î »ç¿ëÇß´Ù.

ºñ·Ï °¢°¢ÀÇ °³º°ÀûÀÎ ¼¼Æ÷°¡ ±Ø¼Ò·®ÀÇ ÅºÈ­¼ö¼Ò¸¦ ÇÔÀ¯ÇÑ´Ù°í ÇÒÁö¶óµµ, ¿¬±¸ÁøÀº Àü ¼¼°èÀûÀ¸·Î °¡Àå dzºÎÇÑ ½Ã¾Æ³ë¹ÚÅ׸®¾ÆÀÎ ÇÁ·ÎŬ·Î·ÎÄÚÄ¿½º(Prochlorococcus)¿Í ½Ã³×ÄÚÄÚÄ¿½º(Synechococcus)¿¡ ÀÇÇØ »ý¼ºµÇ´Â ¾çÀÌ Çؾ翡¼­ ƯÁ¤ ½Ã°£¿¡ 2¹é¸¸ Åæ ÀÌ»óÀ̶ó°í ÃßÁ¤Çß´Ù. ÀÌ °á°ú´Â µÎ °¡Áö Áý´Ü¸¸À¸·Î ¿¬°£ ¾à 3¾ï 800¸¸~7¾ï 770¸¸ ÅæÀÇ ÅºÈ­¼ö¼Ò¸¦ »ý¼ºÇÏ°í ÀÖÀ¸¸ç, Çؾ翡¼­ ¿À¿°µÇÁö ¾ÊÀº Áö¿ª¿¡¼­ ƯÁ¤ ½Ã°£ÀÇ ³óµµ´Â ½Ã¾Æ³ë¹ÚÅ׸®¾Æ°¡ »ý»êÇÑ ÅºÈ­¼ö¼Ò¸¦ ´Ù¸¥ ¹ÚÅ׸®¾Æ°¡ ºÐÇØÇϱ⠶§¹®ÀÓÀ» ¾Ï½ÃÇÑ´Ù.

źȭ¼ö¼Ò´Â ¹Ì·®ÀÇ ¿øÀ¯ ¿À¿°ÀÌ ÀÖ´Â Áö¿ªÀÇ Çؾ翡¼­Á¶Â÷ »êÀçÇÏ´Â ¹°ÁúÀÌÁö¸¸, ÇöÀç±îÁö »ì¾ÆÀÖ´Â Çؾç À¯±âü¿¡ ÀÇÇØ Áö¼ÓÀûÀ¸·Î »ý¼ºµÇ´Â ¾çÀº ÀνĵÇÁö ¾Ê¾Ò´Ù. ½ÇÇè½Ç ¿¬±¸¸¦ ±â¹ÝÀ¸·Î ¿¬±¸ÆÀÀº ÃÖ¼Ò 2°¡Áö ½Ã¾Æ³ë¹ÚÅ׸®¾Æ ±×·ìÀÌ ÅºÈ­¼ö¼ÒÀÇ ´ë·® »ý»ê¿¡ Ã¥ÀÓÀÌ ÀÖÀ¸¸ç, ÀÌ·¸°Ô »ý»êµÈ źȭ¼ö¼Ò¸¦ ´Ù¸¥ ¹ÚÅ׸®¾Æ°¡ ºÐÇØÇÏ¿© ¼·ÃëÇÑ´Ù°í ÀÌ ¿¬±¸ÀÇ ¼±ÀÓ ÀúÀÚÀÎ Christopher Howe ±³¼ö´Â ¹àÇû´Ù.

2010³â µö¿öÅÍ È£¶óÀÌÁð ¿ÀÀÏ À¯Ãâ »ç°ÇÀÌ ¹ß»ýÇÑ ÈÄ, ¸ß½ÃÄÚ¸¸¿¡ ¼­½ÄÇÏ´Â ¹Ì»ý¹°Àº ±íÀº Çؼö À¯Á¤¿¡¼­ »Õ¾î³ª¿Í ¹èÃâµÇ´Â źȭ¼ö¼ÒÀÇ »ó´çÇÑ ¾çÀ» Áý¾î»ïų µíÀÌ Èí¼öÇß´Ù. »õ·Î¿î ¿¬±¸´Â ÀÌ¿Í °°Àº ¹Ì»ý¹°ÀÌ ¾î¶² ÀÌÀ¯·Î ±¤ÇÕ¼º ½Ã¾Æ³ë¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ »ý¼ºµÈ ¾ËÄ­ÀÎ ´ë·®ÀÇ ¿ÀÀÏ À¯Ãâ(oil spills)ÀÌ ¾ø´Â »óÅ¿¡¼­ ¼­½ÄÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´ëÇÑ ¼³¸íÀ» Á¦°øÇß´Ù.

Àΰ£Àº ¹ÚÅ׸®¾Æ°¡ ¿ÀÀÏ À¯ÃâÀ» ºÐÇØÇϴµ¥ »ó´çÇÑ ¿ªÇÒÀ» ÇÏ´Â °ÍÀ¸·Î ¾Ë°í ÀÖ´Ù°í ÀÌ ¿¬±¸¸¦ ÁÖµµÇÑ ¿µ±¹ ÄÉÀӺ긮Áö ´ëÇÐ ¼Ò¼ÓÀÇ David Lea-Smith´Â ¹àÇû´Ù. ³ìÁ¶·ù·Î ¾Ë·ÁÁø ½Ã¾Æ³ë¹ÚÅ׸®¾Æ(cyanobacteria)°¡ źȭ¼ö¼Ò(hydrocarbon)¸¦ ÇÕ¼ºÇÒ ¼ö ÀÖ´Ù´Â »ç½Ç ¿ª½Ã ¾Ë·ÁÁ® ÀÖ´Ù. »õ·Î¿î ¿¬±¸¿¡¼­ Lea-Smith¿Í ¿ö¸¯ ´ëÇÐ(University of Warwick) ¼Ò¼ÓÀÇ ¿¬±¸Áø°ú MIT(Massachusetts Institute of Technology) ¼Ò¼ÓÀÇ µ¿·á ¿¬±¸ÁøÀ¸·Î ±¸¼ºµÈ ¿¬±¸ÆÀÀº ¹Ì»ý¹°ÀÇ Àü ¼¼°è źȭ¼ö¼Ò »ý»ê(global hydrocarbon production)À» ÃßÁ¤Çß´Ù.

¿¬±¸ÁøÀº Çؾ翡¼­ °¡Àå dzºÎÇÑ 2°¡Áö ½Ã¾Æ³ë¹ÚÅ׸®ÀÎ ÇÁ·ÎŬ·Î·ÎÄÚÄ¿½º(Prochlorococcus)¿Í ½Ã³×ÄÚÄÚÄ¿½º(Synechococcus) µîÀÇ À¯ÀüÀÚ¸¦ ¹è¾çÇÑ ÈÄ ¼¼Æ÷ ´ç »ý»êµÈ źȭ¼ö¼ÒÀÇ ¾çÀ» ÃøÁ¤Çß´Ù. ½Ã¾Æ³ë¹ÚÅ׸®¾Æ´Â ÁÖ·Î Á÷¼â źȭ¼ö¼Ò, Æ柵¥Ä­(pentadecane), ÇñŸµ¥Ä­(heptadecane) ¹× 8-ÇñŸµ¥¼¾(8-heptadecene) µîÀ» »ý¼ºÇß´Ù.

ÇÁ·ÎŬ·Î·ÎÄÚÄ¿½º¿Í ½Ã³×ÄÚÄÚÄ¿½º¿¡ ´ëÇÑ ÇØ¾ç °³Ã¼¼ö ÀڷḦ ÀÌ¿ëÇÏ¿©, ¿¬±¸ÆÀÀº ½Ã¾Æ³ë¹ÚÅ׸®¾Æ°¡ ¸Å³â 8¾ï Åæ¿¡ À̸£´Â źȭ¼ö¼Ò¸¦ »ý»êÇÑ´Ù°í ÃßÁ¤Çß´Ù. ÀÌ¿Í ºñ±³Çؼ­, ¹Ì±¹Àº 2014³â ¾à 7¾ï ÅæÀÇ ¼®À¯¸¦ »ý»êÇß´Ù°í ¹Ì±¹ ¿¡³ÊÁöÁ¤º¸±¹(Energy Information Administration)Àº ¹àÇû´Ù.

¶Ç ¿¬±¸ÁøÀº źȭ¼ö¼Ò ºÐÇØ ¹ÚÅ׸®¾Æ°¡ ³·Àº ¼öÁØÀÇ ÇñŸµ¥Ä­ Á¸Àç Á¶°Ç¿¡¼­ ¼­½Ä ¹× ¼ºÀåÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇßÀ¸¸ç, ÀÌ·¯ÇÑ Áõ¸íÀ» Åä´ë·Î °úÇÐÀÚµéÀº ÀÌ ¹Ì»ý¹°ÀÌ ½Ã¾Æ³ë¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ »ý¼ºµÈ ¾ËÄ­À¸·Î »ýÁ¸ÇÒ ¼ö ÀÖ´Ù°í Á¦¾ÈÇß´Ù.

µö¿öÅÍ È£¶óÀÌÁð »çÀüÀÌ ¹ß»ýÇÑ µ¿¾È ¿ÀÀÏÀÇ »ý¹°ºÐÇظ¦ ¿¬±¸Çß´ø ¹Ì±¹ Ķ¸®Æ÷´Ï¾Æ ´ëÇÐ »êŸ¹Ù¹Ù¶ó Ä·ÆÛ½º ¼Ò¼ÓÀÇ »ý¹°Áö±¸È­ÇÐÀÚÀÎ David L. ValentineÀº ÀÌ ¿¬±¸ÀÇ °á°ú°¡ Èï¹Ì·Ó´Ù°í ¹àÇû´Ù. ±×·¯³ª ±×´Â ¿ÀÀÏ ºÐÇØ ¹ÚÅ׸®¾Æ°¡ ¿ÀÀÏ¿¡ ÇÔÀ¯µÇ¾î ÀÖ´Â ¹æÇ⼺ È­ÇÕ¹°°ú °í¸®Çü È­ÇÕ¹°°ú °°Àº º¹ÀâÇÑ À¯ÇüÀÇ ÅºÈ­¼ö¼Ò¸¦ ºÐÇØÇÒ ¼ö ÀÖ´Ù°í ÁöÀûÇß´Ù.

°úÇÐÀÚµéÀº ½Ã¾Æ³ë¹ÚÅ׸®¾Æ°¡ ´Ü±â źȭ¼ö¼Ò ¼øȯÀ¸·Î ¾ð±ÞµÇ´Â »ý¹°Áö±¸È­ÇÐÀû ¼øȯ(biogeochemical cycle)¿¡ Áß¿äÇÑ ÇÙ½É ¿ªÇÒÀÚ¶ó°í ÁÖÀåÇÏ°í ÀÖ´Ù. ÀÌ ¿¬±¸´Â ½Ã¾Æ³ë¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ »ý»êµÈ źȭ¼ö¼ÒÀÇ ¾çÀÌ »ç°í·Î ±âÀÎÇÑ ¿ÀÀÏ À¯Ã⠶Ǵ ÀÚ¿¬ÀûÀÎ ´©Ãâ¿¡ ÀÇÇØ Çؼö·Î ¹èÃâµÈ ¿øÀ¯ÀÇ ¾çÀ» Ãà¼ÒÇÑ´Ù°í Á¦¾ÈÇß´Ù.

ÀÌ ¿¬±¸´Â Çؾç źȭ¼ö¼Ò ¼øȯ(hydrocarbon cycle)¿¡¼­ ½Ã¾Æ³ë¹ÚÅ׸®¾ÆÀÇ ¿ªÇÒÀ» Áõ¸íÇßÀ¸¸ç, ÀÌ·¯ÇÑ °øÁ¤ÀÌ ´ë±Ô¸ð·Î ÀϾ´Ù´Â °ÍÀ» ±Ô¸íÇß´Ù. ´ã¼ö, ÇØ¾ç ¹× À°»ó ȯ°æ µî¿¡ ½Ã¾Æ³ë¹ÚÅ׸®¾ÆÀÇ È®»êµÈ ºÐÆ÷¿Í źȭ¼ö¼Ò¸¦ ºÐÇØÇÏ´Â ¹ÚÅ׸®¾Æ´Â źȭ¼ö¼Ò ¼øȯÀÌ ¼ö¸¹Àº ÀÚ¿¬ÀûÀÎ »ýÅ°迡 ¸¸¿¬ÇØ ÀÖ´Ù´Â »ç½ÇÀ» Á¦¾ÈÇß´Ù.

±×·¯³ª ½Ã¾Æ³ë¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ »ý¼ºµÈ źȭ¼ö¼Ò´Â ´Ù¸¥ ¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ Áö¼ÓÀûÀ¸·Î ºÐÇصǾî ÀüüÀûÀÎ ³óµµ´Â ³·Àº ¼öÁØÀ¸·Î À¯ÁöµÇ°í ÀÖ´Ù. ¿ÀÀÏ À¯Ãâ°ú °°Àº »ç°ÇÀÌ ÀϾ ¶§, źȭ¼ö¼Ò¸¦ ºÐÇØÇÏ´Â ¹ÚÅ׸®¾Æ´Â ÁÖ¿ä ¿¡³ÊÁö °ø±Þ¿øÀÇ ±ÞÀÛ½º·¯¿î Áö¿ªÀûÀÎ Áõ°¡·Î ÃßÁøµÈ ±Þ¼ÓÇÑ °³Ã¼¼ö È®´ë¿Í ÇÔ²² °©ÀÚ±â ÇൿÀ» °³½ÃÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù.

¿ÀÀÏ À¯ÃâÀº È®»êµÈ ÇÇÇظ¦ À¯¹ßÇÏÁö¸¸, Çؾç ȯ°æÀÇ ÀϺδ ´Ù¸¥ ºÎºÐº¸´Ù ÈξÀ ´õ ºü¸£°Ô ȸº¹µÈ´Ù. ÀÌ·¯ÇÑ ¼øȯÀº źȭ¼ö¼Ò »ý¼º°ú źȭ¼ö¼Ò ºÐÇØ ¹ÚÅ׸®¾Æ°¡ ¼­·Î¼­·Î ÆòÇüÀ» ÀÌ·ç°í Á¸ÀçÇϸç, ¿ÀÀÏ À¯ÃâÀÌ ¹ß»ýÇÒ ¶§ źȭ¼ö¼Ò ºÐÇØ ¹ÚÅ׸®¾Æ°¡ Áõ½ÄµÈ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¹ÚÅ׸®¾Æ´Â ¿ÀÀÏ À¯Ãâ·Î ÀÎÇÑ »ýÅ°迡 ÃÊ·¡µÈ ÇÇÇظ¦ º¹±¸ÇÒ ¼ö´Â ¾ø´Ù.

¿¬±¸ÁøÀº ÀÌ ¿¬±¸ °á°ú°¡ Çؾ翡¼­ ¼ºÀåÇÏ´Â ½Ã¾Æ³ë¹ÚÅ׸®¾Æ¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ ÃøÁ¤À» ÅëÇØ µÞ¹ÞħµÉ ¼ö ÀÖ´Â Å×½ºÆ®°¡ ÇÊ¿äÇÏ´Ù°í °­Á¶Çß´Ù. ¶Ç ¿¬±¸ÆÀÀº ¸Å¿ì Ãʱ⠴ܰèÀ̱ä ÇÏÁö¸¸ ¹Ì·¡ °¡´ÉÇÑ ¿¬·á °ø±Þ¿øÀ¸·Î »ê¾÷ÀûÀ¸·Î ½Ã¾Æ³ë¹ÚÅ׸®¾ÆÀÇ ÅºÈ­¼ö¼Ò »ý»ê °¡´É¼ºÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ±âȸ¿¡ °ü½ÉÀ» °¡Áö°í ÀÖ´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 10¿ù 9ÀÏ]

[¿ø¹®º¸±â]

Marine cyanobacteria produce 100s of millions of tonnes of hydrocarbons annually

An international team of researchers, led by the University of Cambridge, has estimated that photosynthetic marine cyanobacteria annually produce hundreds of millions of tonnes of hydrocarbons in the oceans. These organisms in turn support another population of bacteria that feed on these compounds.

In the study, conducted in collaboration with researchers from the University of Warwick and MIT, and published in Proceedings of the National Academy of Sciences (PNAS), the scientists measured the amount of hydrocarbons in a range of laboratory-grown cyanobacteria and used the data to estimate the amount produced in the oceans.
 
Although each individual cell contains minuscule quantities of hydrocarbons, the researchers estimated that the amount produced by two of the most abundant cyanobacteria in the world—Prochlorococcus and Synechococcus—is more than two million tonnes in the ocean at any one time. This indicates that these two groups alone produce between approximately 308 and 771 million tonnes of hydrocarbons per year, yet the concentration at any time in unpolluted areas of the oceans is tiny, thanks to other bacteria that break down the hydrocarbons as they are produced.

Hydrocarbons are ubiquitous in the oceans, even in areas with minimal crude oil pollution, but what hadn¡¯t been recognized until now is the likely quantity produced continually by living oceanic organisms. Based on our laboratory studies, we believe that at least two groups of cyanobacteria are responsible for the production of massive amounts of hydrocarbons, and this supports other bacteria that break down the hydrocarbons as they are produced.
—Professor Christopher Howe, senior author

The scientists argue that the cyanobacteria are key players in an important biogeochemical cycle, which they refer to as the short-term hydrocarbon cycle. The study suggests that the amount of hydrocarbons produced by cyanobacteria dwarfs the amount of crude oil released into the seas by natural seepage or accidental oil spills.

Our study demonstrates the role cyanobacteria play in the ocean ‟hydrocarbon cycle¡± and reveals the massive scale of this process. The widespread distribution of cyanobacteria and hydrocarbon-degrading bacteria in freshwater, marine, and terrestrial environments suggests the hydrocarbon cycle is pervasive in many natural ecosystems.
—Lea-Smith et al.

However, the hydrocarbons produced by cyanobacteria are continually broken down by other bacteria, keeping the overall concentrations low. When an event such as an oil spill occurs, hydrocarbon-degrading bacteria are known to spring into action, with their numbers rapidly expanding, fueled by the sudden local increase in their primary source of energy.

The researchers caution that their results do not in any way diminish the enormous harm caused by oil spills. Although some microorganisms are known to break down hydrocarbons in oil spills, they cannot repair the damage done to marine life, seabirds and coastal ecosystems.

Oil spills cause widespread damage, but some parts of the marine environment recover faster than others. This cycle is like an insurance policy—the hydrocarbon-producing and hydrocarbon-degrading bacteria exist in equilibrium with each other, and the latter multiply if and when an oil spill happens. However, these bacteria cannot reverse the damage to ecosystems which oil spills cause.
—Dr. David Lea-Smith, lead author

The researchers stress the need to test if their findings are supported by direct measurements on cyanobacteria growing in the oceans. They are also interested in the possibility of harnessing the hydrocarbon production potential of cyanobacteria industrially as a possible source of fuel in the future, although such work is at a very early stage.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀϺ»] ±¤ÇÕ¼º ¹°ºÐÇØ ¹ÝÀÀÃʱ⿡ ÀÌ¿ëµÇ´Â ¼ö¼ÒÀÌ¿Â À̵¿°æ·Î Çظí
´ÙÀ½±Û [UniVerve] »õ·Î¿î ¹Ì¼¼Á¶·ù »ý»ê ±â¼úÀ» ÅëÇÑ °íÇ°Áú ¹ÙÀÌ¿À¿¬·á °ø±Þ
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.