Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2015] [ºê¶óÁú] °¡¹³¿¡ ¼ö¼ö¸¦ º¸È£ÇÏ°í Á¾ÀÚ¸¦ °³¼±ÇÏ´Â °í³óµµ ÀÌ»êȭź¼Ò
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.12.07 Á¶È¸¼ö 596
ÆÄÀÏ÷ºÎ
[ºê¶óÁú] °¡¹³¿¡ ¼ö¼ö¸¦ º¸È£ÇÏ°í Á¾ÀÚ¸¦ °³¼±ÇÏ´Â °í³óµµ ÀÌ»êȭź¼Ò
 
ºê¶óÁú »óÆÄ¿ï·Î ´ëÇÐ(University of São Paulo) »êÇÏ »ý¸í °úÇÐ ¿¬±¸¼Ò ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀÌ ¹Ì±¹ ¿ÀÇÏÀÌ¿À ÁÖ¸³´ëÇÐ(Ohio State University) ¼Ò¼ÓÀÇ ¿¬±¸Áø°ú °øµ¿À¸·Î ¼öÇàÇÑ ¿¬±¸´Â Áõ°¡ÇÏ´Â ´ë±â Áß ÀÌ»êȭź¼Ò ³óµµ(CO2 concentration)°¡ °æÁ¦ÇÐÀû ¹× ¿µÇâÇÐÀû Ãø¸é¿¡¼­ Àü ¼¼°èÀûÀ¸·Î Áß¿äÇÑ Àç¹è ÀÛ¹°ÀÎ ¼ö¼ö(sorghum)ÀÇ »ý¸®Çп¡ À̵æÀ» ÃÊ·¡ÇÑ´Ù°í ¹àÇû´Ù. ÀÌ ¿¬±¸´Â Plant Physiology Àú³Î¿¡ °³¹æÇü ³í¹®À¸·Î ¹ßÇ¥µÆ´Ù.

Áõ°¡ÇÏ´Â ÀÌ»êȭź¼Ò ¼öÁØÀ¸·ÎºÎÅÍ À̵æÀ» ÃëÇÏ´Â ¼ö¼öÀÇ ´É·ÂÀº ¼ö¼ö»Ó ¾Æ´Ï¶ó »çÅÁ¼ö¼ö¿Í ¿Á¼ö¼ö¸¦ Æ÷ÇÔÇÏ´Â C4 Ãʺ»(C4 grasses)ÀÇ Æ¯ÀÌÇÑ ±¤ÇÕ¼º(photosynthesis)¿¡ ±âÀÎÇÑ´Ù.

¿¬±¸ÁøÀº ¼ö¼ö ½Ä¹°ÀÌ ³·Àº ½Àµµ ȯ°æ¿¡ ³õÀÏ ¶§ ÀÌ»êȭź¼Ò°¡ °¡¹³À¸·ÎºÎÅÍ ¼ö¼ö¸¦ º¸È£ÇÒ »Ó ¾Æ´Ï¶ó, ¾¾¾Ñ¿¡ 60% ´õ ¸¹Àº ´Ü¹éÁúÀ» ÃàÀûÇÏ°Ô ÇÏ´Â ¼ö¼ö ´ë»ç¿¡¼­ ü°èÀûÀÎ ÀûÀÀÀ» ÃËÁøÇÑ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù.

ÀÌ·¯ÇÑ ¹ß°ßÀº ¼ö¼ö¿Í »çÅÁ¼ö¼ö¿Í ¿Á¼ö¼ö °°Àº ´Ù¸¥ Ãʺ»¿¡ ´ëÇÑ ±âÈÄ º¯È­(climate change)ÀÇ ¿µÇâÀ» ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇØÁØ´Ù. ÀÌ ÇÁ·ÎÁ§Æ® ÁÖ Á¶»ç°üÀÎ Marcos Silveira Buckeridge´Â Àüü ½Ä¹° ±â´ÉÀ» À§ÇÑ ¸ðµ¨À» °³¹ßÇϱâ À§ÇÏ¿© ½Ã½ºÅÛ »ý¹°ÇÐ Á¢±ÙÀ» ÀÌ¿ëÇß´Ù. ÀÌ ¿¬±¸´Â ½Ä¹°ÀÇ ´Ù¸¥ ±â°ü »çÀÌ¿¡ »óÈ£ ÀÛ¿ëÀ» °í·ÁÇÏ¿© °¡¹³(drought)°ú °áÇÕµÈ ÀÌ»êȭź¼ÒÀÇ ³ôÀº ³óµµ°¡ ¼ö¼ö¿¡ ÃÊ·¡ÇÏ´Â È¿°ú¸¦ óÀ½À¸·Î ü°èÀûÀ¸·Î ºÐ¼®Çß´Ù.

ÀÌ ÇÁ·ÎÁ§Æ®´Â FAPESP(Fundação de Amparo à Pesquisa do Estado de São Paulo)¿Í ¸¶ÀÌÅ©·Î¼ÒÇÁÆ® ¿¬±¸¼Ò(Microsoft Research)ÀÇ ÈÄ¿øÀ» ¹Þ¾Ò´Ù.

ÇöÀå¿¡¼­ ¼öÇàµÈ ´ëºÎºÐÀÇ ¿¬±¸´Â ÀÙ, Áٱ⠶Ǵ »Ñ¸® µî°ú °°ÀÌ ½Ä¹°ÀÇ Æ¯Á¤ ºÎºÐ¿¡ ÃÊÁ¡À» ¸ÂÃá ¹Ý¸é, ¿¬±¸ÁøÀº ½Ã½ºÅÛÀ¸·Î¼­ ¼ö¼ö¸¦ ÀÌÇØÇÏ·Á°í Çß´Ù. ¿¬±¸ÁøÀº ¹° ½ºÆ®·¹½º(water stress)°¡ ³ôÀº ¼öÁØÀÇ ÀÌ»êȭź¼Ò¿Í °áÇÕµÉ ¶§, ¼ö¼öÀÇ ±â°ü »çÀÌÀÇ »óÈ£ÀÛ¿ëÀ» ¿¬±¸Çß´Ù. ÀÌ·¯ÇÑ Á¾·ùÀÇ Àüü ½Ä¹° ´ë»ç ¿¬±¸´Â º¯ÇüµÈ ¸î °³ÀÇ À¯ÀüÀÚÀÇ ¿µÇ⠶Ǵ ¹° ¼ö¼ÛÀ» °¡¼Ó½ÃÅ°´Â Áٱ⿡¼­ ½Ã½ºÅÛ°ú °°ÀÌ ÇÑ °¡Áö ±â°üÀ¸·Î Àüü ´ë»ç °æ·Î¸¦ µµÀÔÇÏ´Â µî°ú °°Àº ÀÌÇظ¦ °³¼±ÇÑ´Ù.

¼ö¼ö´Â »çÅÁ¼ö¼ö¿Í À¯ÀüÇÐÀûÀ¸·Î ¸Å¿ì À¯»çÇÏ´Ù. ¼ö¼ö´Â ¼ö¼öÀÇ °Ô³ðÀÌ ´Ü¼øÇϱ⠶§¹®¿¡, ºê¶óÁú¿¡¼­ °æÁ¦ÀûÀ¸·Î ´õ Áß¿äÇÑ Ãʺ»ÀÇ ¿¬±¸¸¦ À§ÇÑ ¶Ù¾î³­ ¸ðµ¨ÀÌ´Ù. Áõ°¡ÇÏ´Â ÀÌ»êȭź¼Ò ¼öÁØÀ¸·ÎºÎÅÍ À̵æÀ» ÃëÇÏ´Â ¼ö¼öÀÇ ´É·ÂÀº ¼ö¼ö»Ó ¾Æ´Ï¶ó »çÅÁ¼ö¼ö¿Í ¿Á¼ö¼ö¸¦ Æ÷ÇÔÇÏ´Â C4 Ãʺ»(C4 grasses)ÀÇ Æ¯ÀÌÇÑ ±¤ÇÕ¼º(photosynthesis)¿¡ ±âÀÎÇÑ´Ù. C4 ±¤ÇÕ¼º(C4 photosynthesis)Àº ´õ È®»êµÈ C3 °øÁ¤¿¡ °ü¿©ÇÏ´Â µÎ °³ÀÇ 3-ź¼Ò ºÐÀÚ ´ë½Å Çü¼ºµÈ 4-ź¼Ò ºÐÀÚ°¡ ÀÌ»êȭź¼Ò Èí¼öÀÇ Ãß°¡ÀûÀÎ ¹æ¹ýÀ» »ç¿ëÇÑ´Ù.

Ãʺ»¿¡¼­ °üÂûµÇ´Â C4 ±¤ÇÕ¼º Ãʺ»ÀÇ ÀÙ¿¡¼­ ÇغÎÇÐÀû º¯°æ ¹× »ýÈ­ÇÐÀû º¯°æÀ¸·Î À̾îÁú ¼ö ÀÖ´Â ¸Å¿ì È¿À²ÀûÀÎ ½Ã½ºÅÛÀ¸·Î ÀÌ»êȭź¼Ò¸¦ º¸´Ù ´õ È¿À²ÀûÀ¸·Î »ç¿ëÇÑ´Ù.

°øÁ¤ÀÌ ÀÌ·ç¾îÁö´Â µ¿¾È ½Ä¹° ±â°ü »çÀÌ¿¡ »óÈ£ ÀÛ¿ëÀ» ºÐ¼®Çϱâ À§ÇÏ¿© Buckeridge ¿¬±¸ÆÀÀº À¯ÀüÀÚ ±â´É°ú ¿¬°ü¼º, À¯ÀüÀÚ ¹× ´Ü¹éÁú ¹ßÇö°ú Á¦¾î ¹× ½Ã½ºÅÛÀÇ ´ë»ç»ê¹°»Ó ¾Æ´Ï¶ó ƯÁ¤ÇÑ Á¶°Ç ÇÏ¿¡¼­ º¯°æ ¶Ç´Â »ý¼ºµÈ ¸ðµç ´ë»ç»ê¹°À» Á¶»çÇϱâ À§ÇÏ¿© ¼ö¼ö¿¡ ´ëÇÑ ´ë»ç ¿¬±¸(metabolomics studies)¸¦ ¼öÇàÇß´Ù.

¼ö¼ö ½Ä¹°ÀÌ ³®¾Ë Çü¼º ¹× Ã游±â(filling phase)ÀÇ 120ÀÏ µ¿¾È »ó½ÂµÈ ÀÌ»êȭź¼Ò¿Í °¡¹³ Á¶°Ç¿¡¼­ Àç¹èµÆ´Ù. ÀÙ ±¤ÇÕ¼º, È£Èí°ú ±â°ø À¯µ¿¼º(stomatal conductance, ÀÙ ±â°ø°ú °ø±â »çÀÌÀÇ ÀÌ»êȭź¼Ò ±³È¯ ¼Óµµ) µîÀÌ ½Ä¼ö ÈÄ 120ÀÏ°ú 90ÀÏ¿¡ ÃøÁ¤µÆ´Ù. ½Ä¹°Àº °¢ ±â°£ÀÇ ¸»±â¿¡ ¼öÈ®µÇ¾úÀ¸¸ç, ¹ÙÀÌ¿À¸Å½º¿Í ÀÙÀÇ ¼¼Æ÷ °£ ÁÖ¿ä ´ë»ç¹°Áú, ÁÙ±â, »Ñ¸®, ÁöÁö±Ù(prop roots) ¹× °î¹° µîÀÌ Æò°¡µÆ´Ù. ¿¬±¸ÁøÀº »ó½ÂµÈ ÀÌ»êȭź¼Ò°¡ ±â°ø À¯µ¿¼ºÀ» Ãà¼ÒÇÏ¿© ¹°ÀÇ ÀÌ¿ë È¿À²À» Áõ°¡½ÃŲ´Ù´Â °ÍÀ» È®ÀÎÇß´Ù.

¹Ì¹ÌÇÑ »ý¸®ÇÐÀû È¿°ú°¡ °üÂûµÆÁö¸¸, °¡¹³ ´ëÇÑ »ý¸®ÇÐÀû ¹× ´ë»çÇÐÀû ¹ÝÀÀ¿¡¼­ Áö¿¬ ´öºÐ¿¡, ³ôÀº ´ë±â Áß ÀÌ»êȭź¼Ò ¼öÁØ ÇÏ¿¡¼­ ¼ºÀåÇÏ´Â ¼ö¼ö Ã游±â µ¿¾È ³·Àº ½Àµµ¿¡ ÀÇÇØ À¯¹ßµÇ´Â ³®¾ËÀÇ Ç°Áú ¼Ò½ÇÀ» ¿ÏÈ­½ÃŲ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù. ÀÌ ¿¬±¸´Â ÀÌ·¯ÇÑ Á¶°Ç¿¡¼­ ¼ºÀåÇÏ´Â ½Ä¹°ÀÇ ´Ù¸¥ ±â°üÀÇ ´ë»çÇÐÀû ¹ÝÀÀÀ» ºÐ¼®ÇÑ ÃÖÃÊÀÇ ¿¬±¸ÀÌ´Ù. ¶ÇÇÑ ÀÌ ¿¬±¸´Â °¢ ±â°ü¿¡¼­ º¯È­°¡ ¼ö¼ö¿¡¼­ ³®¾Ë Á¶¼º¿¡ ¾î¶»°Ô ¿µÇâÀ» ³¢Ä¡´ÂÁö¸¦ óÀ½À¸·Î º¸¿© ÁÖ¾ú´Ù.

¿¬±¸ °á°ú´Â ±âÈÄ º¯È­¿¡ ´ëÇÑ È¸º¹·Â¿¡ Ã¥ÀÓÀÌ ÀÖ´Â À¯ÀüÀÚ¿¡ ´ëÇÑ ½Éµµ ±íÀº ±Ô¸í¿¡ ´ëÇÑ Ãʼ®À» ´ÙÁ³À¸¸ç, ƯÈ÷ ½Ä¹°ÀÇ ±â°üÀÌ ¾¾¾Ñ »ý»êÀ» °³¼±Çϱâ À§ÇÏ¿© ¾î¶»°Ô »óÈ£ÀÛ¿ëÇÏ´ÂÁö¸¦ ±Ô¸íÇß´Ù.

¿¬±¸ÁøÀº ´ë»ç Â÷ÀÌ¿¡µµ ºÒ±¸ÇÏ°í ¼ö¼ö¿Í ´Ù¸¥ ÀÛ¹°ÀÇ À¯Àü °øÇÐÀûÀÎ Á¦¾î¸¦ ¸ñÀûÀ¸·Î »ç¿ëµÉ ¼ö ÀÖ´Â À¯ÀüÀÚ ÁöµµÀÇ »ý¼ºÀ» ¸ñÇ¥·Î ÇÏ°í ÀÖ´Ù. ÇÊ¿äÇÏ´Ù¸é ½Ä¹° ´ë»ç ÀÛ¿ëÀÌ Á¶ÀýµÉ ¼ö Àֱ⠶§¹®¿¡, À¯ÀüÀÚ Áöµµ´Â ¹Ì·¡ ±âÈÄ º¯È­¸¦ ´õ Àß Á¦¾îÇÒ ¼ö ÀÖ°Ô ÇØÁÙ °ÍÀÌ´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 12¿ù 7ÀÏ]

[¿ø¹®º¸±â]

Study finds high concentration of CO2 protects sorghum against drought and improves seeds

A study by researchers at the University of São Paulo¡¯s Bioscience Institute (IB-USP) in Brazil, with colleagues at the Ohio State University, has found that the rising atmospheric concentration of CO2 is beneficial for the physiology of sorghum, an economically and nutritionally important crop grown worldwide. An open-access paper on their work is published in the journal Plant Physiology.

The ability of sorghum to benefit from rising CO2 levels is due to a peculiarity of photosynthesis in the family of C4 grasses, which include sugarcane and maize as well as sorghum.
 
The researchers found that when sorghum plants were kept in a low-humidity environment, CO2 not only protected them against drought but also promoted a systemic adjustment in their metabolism that led their seeds to accumulate 60% more protein.

The discovery contributes to a better understanding of the impact of climate change on sorghum and other grasses such as sugarcane and maize. According to Marcos Silveira Buckeridge, the principal investigator for the project ¡°Using systems biology approach to develop a model for whole plant functioning¡±, the study is the first systematic analysis of the effects on sorghum of high concentrations of CO2 combined with drought to consider the interactions between different organs of the plant.

The project is supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and Microsoft Research.

While most research in the field focuses on specific parts of plants, such as leaves, stems or roots, we set out to understand sorghum as a system. We studied the interactions among its organs when subjected to water stress combined with high levels of CO2. Whole-plant metabolism studies of this kind improve our understanding of the implications of modifying several genes or introducing an entire metabolic pathway into one organ, such as a system in the stem that accelerates water transport. This requires investigating what happens not just in the stem but also in leaves, flowers and seeds, producing a broader picture without losing the specific focus on the more reduced level of processes, i.e., the plant¡¯s biochemistry.
—Marcos Silveira Buckeridge

Sorghum is genetically very similar to sugarcane. It is an excellent model for the study of grasses that are economically more important to Brazil because of the simplicity of its genome, which has been completely sequenced and is available to the international scientific community.

The ability of sorghum to benefit from rising CO2 levels is due to a peculiarity of photosynthesis in the family of C4 grasses, which include sugarcane and maize as well as sorghum. C4 photosynthesis uses a supplementary method of CO2 uptake in which a 4-carbon molecule is formed instead of the two 3-carbon molecules involved in the more widespread C3 process.

The C4 photosynthesis found in grasses is a highly efficient system that leads to anatomical and biochemical modifications in their leaves, enabling them to make more efficient use of CO2.
—Marcos Silveira Buckeridge

To analyze the interactions among plant organs during the process, Buckeridge¡¯s team at IB-USP, in collaboration with researchers at the Ohio State University in the United States, performed metabolomics studies on sorghum to investigate all the metabolites produced or modified under specific conditions, as well as gene functions and interrelations, gene and protein expression and regulation, and the metabolic output of the system.

Sorghum plants were grown under elevated CO2 and drought conditions for 120 days during the grain formation and filling phase. Leaf photosynthesis, respiration and stomatal conductance (the rate of CO2 exchange between leaf stomata and the air) were measured 90 days and 120 days after planting. Plants were harvested at the end of each period, and the biomass and intracellular primary metabolites of leaves, culm, root, prop roots and grains were evaluated. The researchers found that elevated CO2 reduced stomatal conductance, leading to increased water use efficiency.

Although minor physiological effects were observed, growing sorghum under high levels of atmospheric CO2 was found to mitigate the loss of grain quality caused by low humidity during the filling phase thanks to a delay in physiological and metabolic responses to drought. To our knowledge, this is the first study to analyse the simultaneous metabolic responses of the different organs of a plant grown in these conditions. It also shows for the first time how changes in each organ can affect grain composition in sorghum.
—Marcos Silveira Buckeridge

The findings pave the way for a deeper understanding of the genes responsible for this resilience to climate change, and in particular of how the plant's organs can interact to improve seed production.

We aim to produce a genetic map that can be used for the purposes of genetic engineering of sorghum and other crops despite the metabolic differences between them. This would help us deal better with climate change in the future, as we would be able to adjust plant metabolism if necessary.
—Marcos Silveira Buckeridge
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀϺ»] Ä¡¼ö¿ë ´ïÀ» ¼Ò¼ö·Â ¹ßÀü¿¡ È°¿ë
´ÙÀ½±Û [½º¿þµ§] ¿Â½Ç °¡½º ÃøÁ¤ÀÌ °¡´ÉÇÑ °íµµÈ­µÈ Ä«¸Þ¶ó
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.