Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[ºÏ¾Æ¸Þ¸®Ä«] [2013] [¹Ì±¹] ³ª³ë°áÁ¤À» ÀÌ¿ëÇÑ ±âüÀÇ ÈíÂø ¹× Å»ÂøÀ» ÃøÁ¤ÇÏ´Â »õ·Î¿î ½Ã½ºÅÛ
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2013-08-16 Á¶È¸¼ö 545
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ³ª³ë°áÁ¤À» ÀÌ¿ëÇÑ ±âüÀÇ ÈíÂø ¹× Å»ÂøÀ» ÃøÁ¤ÇÏ´Â »õ·Î¿î ½Ã½ºÅÛ

³ª³ë°áÁ¤(nanocrystal)ÀÌ ¼ö¼Ò¿Í ´Ù¸¥ ±âü¸¦ Èí¼ö ¹× ¹èÃâÇÏ´Â ¹æ½ÄÀ» Á÷Á¢ÀûÀ¸·Î ÃøÁ¤ÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛÀÌ ÀÚµ¿Â÷ÀÇ º¸´Ù ´õ È¿À²ÀûÀÎ Ã˸Šº¯È¯ ÀåÄ¡(catalytic converter), °³¼±µÈ ¹èÅ͸® ¹× ´õ ¹Î°¨ÇÑ ±âü ¼¾¼­(gas sensor) µîÀ¸·Î À̾îÁú Àü¸ÁÀÌ´Ù. ¹Ì±¹ ·Î·»½º ¹öŬ¸® ±¹¸³ ¿¬±¸¼Ò(Lawrence Berkeley National Laboratory) ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀÌ °³¹ßÇÑ ÀÌ ±â¼úÀº Nature Materials Àú³Î¿¡ ¹ßÇ¥µÈ ³í¹®¿¡ »ó¼¼È÷ ±â¼úµÆ´Ù. 

³ª³ë°áÁ¤ »óº¯È¯(nanocrystal phase transformation)ÀÇ Á¤·®Àû ÀÌÇØ´Â º¸´Ù ´õ È¿À²ÀûÀÎ ¿¡³ÊÁö Àüȯ°ú Ã˸ÅÈ­ °øÁ¤À» °¡´ÉÇÏ°Ô ÇÏÁö¸¸, ¹ÝÀÀ¼º ȯ°æ¿¡¼­ Ư¼ºÀÌ Àß ±Ô¸íµÈ ³ª³ë±Ô¸ð ½Ã½ºÅÛÀ» Á÷Á¢ÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ´Â °ÍÀÌ ¾î·Æ±â ¶§¹®¿¡ Á¦¾àÀÌ µû¸¥´Ù. ¿¬±¸ÁøÀº »õ·Î¿î ÇöÀå¿¡¼­ Àû¿ëÇÒ ¼ö ÀÖ´Â ¹ß±¤À» ±â¹ÝÀ¸·Î ÇÏ´Â ÇÁ·Îºê¸¦ ÀÌ¿ëÇÏ¿© ³ª³ë°áÁ¤ »óº¯È¯ÀÇ Á¤·®À» Á÷Á¢ÀûÀ¸·Î ÃøÁ¤ÇÒ ¼ö ÀÖ´Ù°í Á¦¾ÈÇß´Ù. ÀÌ ¿¬±¸¿¡¼­´Â Æȶóµã ³ª³ë°áÁ¤(palladium nanocrystal)ÀÇ ¼ö¼ÒÈ­ º¯È¯(hydriding transformation)ÀÌ Àû¿ëµÆ´Ù. 

¿¬±¸ÁøÀÇ Á¢±ÙÀº ±âÆÇ ±âÁúÀÇ ¹®Á¦, ¹èÀ§ÀÚ È¿°ú(ligand effect) ¹× ¿ÜºÎ ½ÅÈ£ º¯È¯ºÎ(external signal transducer) µîÀ» Á¦°ÅÇÏ¿© ³ª³ë°áÁ¤ »óº¯È­ÀÇ ¿­¿ªÇаú °íÀ¯ÀÇ ¿ªÇÐ(intrinsic kinetics)À» ±Ô¸íÇß´Ù. ¿À·§µ¿¾È ³ª³ë°áÁ¤¿¡¼­ ³ªÅ¸³­ ºÐ¸íÇÑ Å©±â ÀÇÁ¸Àû °æÇâÀº Çൿ ¾ç½Ä¿¡¼­ µ¢¾î¸®¿Í À¯»çÇÑ °ÍÀ¸·Î ÀÎÁ¤µÆ´Ù. Åë°è ±â°èÀû ½Ã¹Ä·¹À̼ÇÀº ÀÌ·¯ÇÑ °æÇâÀÌ ¿­ÀûÀ¸·Î À¯¹ßµÈ 1Â÷ »óÀüÀÌ(phase transition)ÀÇ ³ª³ë°¡µÒ(nanoconfinement)ÀÇ °á°ú¶ó´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. »ó °æ°è ±Ùó, »õ·Î¿î »óÀÇ ÀÓ°èÇÙ(critical nuclei)Àº ³ª³ë°áÁ¤ ÀÚü¿Í Å©±â¿¡¼­ À¯»çÇß´Ù. ÀÌÈÄ º¯Çü ¼Óµµ´Â ³ª³ë°áÁ¤ÀÇ Ä¡¼ö, Áï Å©±â¿¡ ÀÇÇØ ºÒ°¡ÇÇÇÏ°Ô Á¦¾îµÆ´Ù. 

¿¬±¸ÁøÀÇ °á°ú´Â ³ª³ë°¡µÒÀÌ ¼ö¼Ò ÀúÀå, Ã˸ÅÈ­ ¹ÝÀÀ, ¹èÅ͸® ¹× ¿¬·á ÀüÁö µî¿¡ »óÀÀÇÏ´Â ¿­ÀûÀ¸·Î À¯¹ßµÈ °íü »óÅ »ó º¯ÀÌÀÇ ±¤¹üÀ§ÇÑ °èÃø¿¡ ±âº»ÀûÀ¸·Î ¾î¶»°Ô ¿µÇâÀ» ³¢Ä¡´ÂÁö¿¡ ´ëÇÑ ÀÌÇØ¿¡ ÀϹÝÀûÀÎ ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦°øÇÑ´Ù°í ÁÖÀúÀÚÀÎ Rizia BardhanÀº ¹àÇû´Ù. 

ÈíÂø ¹× Å»Âø ÀÀ¿ë¿¡¼­ ³ª³ë°áÁ¤À» »ç¿ëÇϴµ¥ À־ Áøº¸´Â °øÁ¤ µ¿¾È °³º°ÀûÀÎ ³ª³ë°áÁ¤¿¡¼­ ÀϾ´Â ¹°¸®Àû ¹× È­ÇÐÀû º¯È­¸¦ ÃøÁ¤Çϱâ À§ÇÑ ±âÁ¸ ¹æ¹ýÀÇ ÇÑ°è¿¡ ÀÇÇØ ¹æÇØ¹Þ¾Æ ¿Ô´Ù. °á°úÀûÀ¸·Î Áøº¸´Â ½ÃÇàÂø¿À¿¡ ÀÇÇØ ´Þ¼ºµÆÀ¸¸ç, °øÇÐÀûÀ¸·Î Á¦¾îµÈ ½Ã·á¿Í ƯÁ¤ ±âÇÏÇп¡ ÀÇÇØ Á¦ÇÑÀ» ¹Þ¾Ò´Ù. 

»õ·Î¿î ¹æ¹ýÀº Çü±¤ ºÐ¼®¹ý(fluorescence spectroscopy)À̶ó°í ºÒ¸®´Â Ç¥ÁØ °øÁ¤À» ±â¹ÝÀ¸·Î ÇÑ´Ù. ·¹ÀÌÀú ºöÀº ¸ñÇ¥ ³ª³ë°áÁ¤ À§¿¡ ÁýÁßµÇ¾î ³ª³ë°áÁ¤ÀÌ Çü±¤À» ³»´Â ¿øÀÎÀÌ µÈ´Ù. ³ª³ë°áÁ¤ÀÌ ±âü ºÐÀÚ¸¦ Èí¼öÇÒ ¶§, ³ª³ë°áÁ¤ÀÇ Çü±¤ °­µµ´Â Èñ¹ÌÇØÁö°í, ³ª³ë °áÁ¤ÀÇ Çü±¤Àº ±âü¸¦ ¹èÃâÇÒ ¶§ ȸº¹µÈ´Ù. 

±â¼úÀº ´Ü¼øÇÏ°í Á÷Á¢ÀûÀ̸ç, ±Ô°ÝÇ°À¸·Î ¹Ù·Î ±¸¸ÅÇÒ ¼ö ÀÖ´Â ÀåÄ¡¸¦ »ç¿ëÇÑ´Ù. µû¶ó¼­ ´Ù¸¥ ¿¬±¸ÁøÀÌ ÀÌ·¯ÇÑ ÀåÄ¡¸¦ ÀÌ¿ëÇϴµ¥ ¾î·Á¿òÀÌ ¾ø´Ù°í ¿¬±¸ÁøÀº ¹àÇû´Ù. Çü±¤ È¿°ú´Â ¸Å¿ì ¹Ì¹¦ÇÏ°í ³ª³ë°áÁ¤ Å©±â Â÷ÀÌ¿¡ »ó´çÈ÷ ¹Î°¨ÇÏ´Ù. ÀÌ·¯ÇÑ Â÷À̸¦ È®ÀÎÇÏ´Â °ÍÀº Å©±â°¡ ±ÕÀÏÇÑ ³ª³ë°áÁ¤À» ÀÌ¿ëÇؾ߸¸ ÇÑ´Ù°í ÁÖÀúÀÚÀÎ BardhanÀº ¹àÇû´Ù. 

ÀÌ°ÍÀÌ Àü¿¡´Â È¿°ú°¡ °üÂûµÇÁö ¾Ê¾Ò´ø ÇÑ °¡Áö ÀÌÀ¯´Ù. ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ´Â º¼ ¹Ð¸µ(ball milling)°ú ´Ù¸¥ ½À½Ä-È­Çй°Áú Á¢±Ù ¹æ¹ý µî°ú °°Àº Á¦ÀÛ ±â¼úÀº ´Ù¾çÇÑ ¹üÀ§ÀÇ ´Ù¸¥ Å©±â¸¦ °¡Áö´Â ³ª³ë°áÁ¤À» »ý»êÇÑ´Ù. ÀÌ·¯ÇÑ ³ª³ë°áÁ¤ÀÇ Å©±â Â÷ÀÌ´Â È¿°ú¸¦ °¡¸®´Âµ¥ ÃæºÐÇÏ´Ù. 

¿¬±¸ÁøÀÇ ±â¼úÀ» Å×½ºÆ®Çϱâ À§ÇÏ¿©, ¿¬±¸ÁøÀº ÆȶóµãÀ¸·Î Á¦ÀÛµÈ ³ª³ë°áÁ¤À¸·Î ¼ö¼Ò ±âü °¨Áö¸¦ ¿¬±¸Çß´Ù. ÆȶóµãÀº ¸Å¿ì ¾ÈÁ¤ÇÏ°í, Èí¼öµÈ ¼ö¼Ò¸¦ ½±°Ô ¹èÃâÇϱ⠶§¹®¿¡ ÀÌ ¿¬±¸ÀÇ ´ë»óÀ¸·Î ¼±Á¤µÆ´Ù. ¶Ç ¿¬±¸ÁøÀº ¼ö¼Û ºÐ¾ß¿¡¼­ ¼ö¼ÒÀÇ ÀÌ¿ë¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô±â ¶§¹®¿¡ ¼ö¼Ò¸¦ »ç¿ëÇß´Ù. ÀÌ·¯ÇÑ ½Ã³ª¸®¿À¿¡ ´ëÇÑ ÁÖ¿ä ±â¼úÀû ¹®Á¦ Áß Çϳª´Â ¾ÈÀüÇÏ°í ºñ¿ë È¿°úÀûÀÎ ÀúÀå ¹æ¹ýÀ» °³¹ßÇÏ´Â °ÍÀÌ´Ù. ³ª³ë°áÁ¤À» ±â¹ÝÀ¸·Î ÇÏ´Â ±Ý¼Ó ÇÏÀ̺긮µå ½Ã½ºÅÛÀº °³¹ßµÇ°í ÀÖ´Â Á¢±Ù ¹æ¹ý Áß ÇϳªÀÌ´Ù. 

¿¬±¸ÁøÀÌ Á¦ÀÛÇÑ ÃøÁ¤ ÀåÄ¡´Â ³ª³ë°áÁ¤ÀÇ Å©±â°¡ ±Ý¼ÓÀÌ ¼ö¼Ò¸¦ Èí¼ö ¹× ¹èÃâÇÒ ¼ö ÀÖ´Â ¼Óµµ¿¡ ´ëÇÑ È¿°ú¸¦ ÈξÀ ´õ °­·ÂÇÏ°Ô ÇØÁØ´Ù. »Ó¸¸ ¾Æ´Ï¶ó Àç·á°¡ Èí¼öÇÒ ¼ö ÀÖ´Â ¼ö¼ÒÀÇ ¾çÀº ÀÌÀüÀÇ ¿¹Ãøº¸´Ùµµ ÈξÀ ´õ ¸¹Àº °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº ¸ðµÎ ¼ö¼Ò ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ÇÙ½ÉÀûÀÎ ÀåÁ¡ÀÌ´Ù. ÀÔÀÚÀÇ Å©±â°¡ ´õ ÀÛÀ»¼ö·Ï, Àç·á´Â ±âü¸¦ ´õ¿í ºü¸£°Ô Èí¼öÇÒ ¼ö ÀÖÀ¸¸ç, ´õ ¸¹Àº ±âü°¡ Èí¼öµÉ¼ö·Ï, ÀÔÀÚ´Â ¼ö¼Ò¸¦ ´õ ºü¸£°Ô ¹èÃâÇÒ ¼ö ÀÖ´Ù. 

¶Ç ¿¬±¸ÁøÀº ÈíÂø/Å»Âø ¼Óµµ°¡ ¨ç ¾Ð·Â, ¨è ¿Âµµ ¹× ¨é ³ª³ë°áÁ¤ Å©±â µî ¼¼ °¡Áö ¿äÀο¡ µû¶ó °áÁ¤µÈ´Ù´Â »ç½ÇÀ» ±Ô¸íÇß´Ù. ¿¬±¸ÁøÀº °áÇÔ°ú ¹Ì¼¼ÇÑ º¯È­(strain)°¡ ÀÌÀü¿¡ Á¦¾ÈµÆ´ø °Íó·³ »ó´çÇÑ È¿°ú¸¦ °¡Áø´Ù´Â °Í°ú °°Àº ºÎ°¡ÀûÀÎ ¿äÀÎÀº ¹ß°ßÇÏÁö ¸øÇß´Ù. ÀÌ·¯ÇÑ »õ·Î¿î Á¤º¸¸¦ ±Ù°Å·Î, ¿¬±¸ÁøÀº ´Ù¸¥ ±âü¿¡ ´ëÇÏ¿© ´Ù¾çÇÑ À¯Çü ¹× Å©±â ¹üÀ§¿¡ ÀÖ´Â ³ª³ë°áÁ¤ÀÇ ÈíÂø/Å»Âø ¼Óµµ¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Â ´Ü¼øÇÑ ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ÇÀ» âÃâÇß´Ù. 

ÀÌ°ÍÀº ¼ö¼Ò ÀúÀå ½Ã½ºÅÛ, Ã˸Šº¯È¯ ÀåÄ¡(catalytic converter), ¹èÅ͸®, ¿¬·á ÀüÁö ¹× ½´ÆÛÄ¿ÆнÃÅÍ µîÀ» Æ÷ÇÔÇÏ¿© ±¤¹üÀ§ÇÑ ³ª³ë°áÁ¤ ÀÀ¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô ÇØÁشٰí BardhanÀº ¹àÇû´Ù. 

BardhanÀº ·Î·»½º ¸®¹ö¸ð¾î ±¹¸³ ¿¬±¸¼Ò ¼Ò¼ÓÀ̾úÀ¸¸ç, ÇöÀç ¹ê´õºôÆ® ´ëÇÐ(Vanderbilt University) ¼Ò¼ÓÀÌ´Ù. ÀÌ·¯ÇÑ °³¹ßÀ» À§ÇÑ Çù·Â ¿¬±¸¿¡´Â ¹ê´õºôÆ® ´ëÇÐ ±â°è°øÇаú ¼Ò¼ÓÀÇ Á¶±³¼öÀÎ Cary Pint, Ķ¸®Æ÷´Ï¾Æ ´ëÇÐ ¹öŬ¸® Ä·ÆÛ½º(University of California, Berkeley) ¼Ò¼ÓÀÇ Ali Javey, ·Î·»½º ¹öŬ¸® ±¹¸³ ¿¬±¸¼Ò ¼Ò¼ÓÀÇ Lester Hedges, Stephen Whitelam ¹× Jeffrey Urban µîÀÌ Âü¿©Çß´Ù. 

[Ãâó : KISTI ¹Ì¸®¾È(http://mirian.kisti.re.kr) ¡º±Û·Î¹úµ¿Çâºê¸®ÇÎ(GTB)¡»2013. 08. 14]


[¿ø¹®º¸±â]


New system measures adsorption and release of gases by nanocrystals

A new system that can directly measure the manner in which nanocrystals adsorb and release hydrogen and other gases could result in more efficient catalytic converters on autos, improved batteries and more sensitive gas sensors. The technique, developed by researchers at Lawrence Berkeley National Laboratory, is described in a paper published in the journal Nature Materials.

Progress in using nanocrystals in adoption and desorption applications has been hindered by limitations in existing methods for measuring the physical and chemical changes that take place in individual nanocrystals during the process. As a result, advances have been achieved by trial-and-error and have been limited to engineered samples and specific geometries.

The new method is based on a standard procedure called fluorescence spectroscopy. A laser beam is focused on the target nanocrystals, causing them to fluoresce. As the nanocrystals adsorb the gas molecules, the strength of their fluorescent dims and as they release the gas molecules, it recovers.

That is one reason why the effect wasn¡¯t observed before: Fabrication techniques such as ball milling and other wet-chemical approaches that have been widely used produce nanocrystals in a range of different sizes. These differences are enough to mask the effect.

To test their technique, the researchers studied hydrogen gas sensing with nanocrystals made out of palladium?chosen because it is very stable and it readily releases adsorbed hydrogen. They used hydrogen because of the interest in using it for transportation. One of the major technical obstacles to this scenario is developing a safe and cost-effective storage method. A nanocrystal-based metal hydride system is one of the approaches under development.

The measurements they made revealed that the size of the nanocrystals have a much stronger effect on the rate that the material can adsorb and release hydrogen and the amount of hydrogen that the material can absorb than previously expected?all key properties for a hydrogen storage system. The smaller the particle size, the faster the material can absorb the gas, the more gas it can absorb and faster it can release it.

The researchers also determined that the adsorption/desorption rate was determined by just three factors: pressure, temperature and nanocrystal size. They did not find that additional factors such as defects and strain had a significant effect as previously suggested. Based on this new information, they created a simple computer simulation that can predict the adsorption/desorption rates of various types and size ranges of nanocrystals with a variety of different gases.

This makes it possible to optimize a wide range of nanocrystal applications, including hydrogen storage systems, catalytic converters, batteries, fuel cells and supercapacitors, Bardhan said.

Bardhan, who was at Lawrence Livermore, is now at Vanderbilt University. Collaborators in the development were Vanderbilt Assistant Professor of Mechanical Engineering Cary Pint, Ali Javey from the University of California, Berkeley and Lester Hedges, Stephen Whitelam and Jeffrey Urban from the Lawrence Berkeley National Laboratory.

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] ¼ö¾ÐÆļ⿡¼­ ¹ß»ýÇϴ ȯ·ù¼ö¸¦ °æÁ¦ÀûÀ¸·Î ó¸®Çϱâ À§ÇÑ ±â¼ú
´ÙÀ½±Û [Ä¥·¹] Ä¥·¹ÀÇ Å¾籤 ¹ßÀü µµÀÔ ÇöȲ°ú °úÁ¦
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.