Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[À¯·´] [2014] [³×´ú¶õµå] žçÀüÁöÀÇ ÃÖ´ë ±¤Æ÷ȹ È¿À² ´Þ¼º
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2014-03-05 Á¶È¸¼ö 366
ÆÄÀÏ÷ºÎ
[³×´ú¶õµå] žçÀüÁöÀÇ ÃÖ´ë ±¤Æ÷ȹ È¿À² ´Þ¼º
 
³×´ú¶õµå µ¨ÇÁÆ® ±â¼ú ´ëÇÐ(TU Delft)ÀÇ ±¤ÀüÁö ¹°Áú ¹× µð¹ÙÀ̽º ¿¬±¸ ±×·ìÀº ¹Ú¸· ¹ÝµµÃ¼ ¹°Áú¿¡¼­ ±¤Èí¼ö Çâ»óÀÇ ÀÌ·ÐÀû ÇѰ踦 ½Ã¿¬ÇÏ¿´´Ù. ÀÌ´Â Â÷¼¼´ë °íÈ¿À², Àúºñ¿ëÀÇ ±Ø¹Ú¸· °áÁ¤Áú ½Ç¸®ÄÜ Å¾çÀüÁö¸¦ ½ÇÇöÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀÌ µÉ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀδÙ. ÀÌµé ¿¬±¸ÁøÀº °áÁ¤Áú ½Ç¸®ÄÜ ¿þÀÌÆÛ¸¦ »ç¿ëÇÏ¿© ½ÇÇèÀûÀ¸·Î ¹ÝµµÃ¼ ¹°Áú¿¡¼­ ±¤Èí¼öÀÇ ÃÖ´ë Çâ»óÀ» ¿¹ÃøÇÑ ÀÌ·ÐÀ» °ËÁõÇÏ¿´´Ù. ¿¬±¸ÁøÀº ±¤¹üÀ§ÇÑ ±¤ ½ºÆåÆ®·³ ¿µ¿ª¿¡¼­ ±¤Èí¼ö Çâ»óÀÇ ÀÌ·ÐÀû ÇÑ°è¿¡ ¸Å¿ì ±ÙÁ¢ÇÑ Ã¹ ½ÇÇèÀ» ¼º°øÀûÀ¸·Î ¼öÇàÇÏ¿´´Ù. À̵éÀÇ ½ÇÇèÀº ÀÌ·ÐÀû ÇÑ°èÄ¡ÀÇ 99.8ÆÛ¼¾Æ®¿¡ ¸Å¿ì ±ÙÁ¢ÇÑ °á°ú¸¦ ¾ò¾ú´Ù. žçÀüÁö¿¡¼­ ÀÌ·± Èí¼ö Çâ»ó ÇѰ踦 ½ÇÇèÀûÀ¸·Î ½Ã¿¬ÇÑ °ÍÀº Áö³­ 30³â µ¿¾ÈÀÇ ±¤ÀüÁö ¿¬±¸¿¡¼­ óÀ½À¸·Î ¼öÇàµÈ °ÍÀÌ´Ù.

³×´ú¶õµå µ¨ÇÁÆ® ±â¼ú ´ëÇÐÀÇ ±¤ÀüÁö ¹°Áú ¹× µð¹ÙÀ̽º ¿¬±¸ ±×·ìÀº ±× µ¿¾È žç ÀüÁöÀÇ ±¤Æ÷ȹ ±¸Á¶ÀÇ µðÀÚÀÎ, Á¦ÀÛ ±×¸®°í ½ÇÇè¿¡¼­ Àü¼¼°èÀûÀ¸·Î ÀÎÁ¤ ¹ÞÀº Àü¹®°¡µé·Î ÀÌ·ç¾îÁ³´Ù. ÀÌ ±×·ìÀÇ ¿¬±¸ÁøÀº °áÁ¤Áú ½Ç¸®ÄÜ ¿þÀÌÆÛ¸¦ À§ÇÑ ±Ý¼ÓÀ» »ç¿ëÇÏÁö ¾Ê´Â ÷´Ü ±¤Æ÷ȹ ¹æ¹ýÀ» °³¹ßÇÏ°í ÀÖ´Ù. ÀÌµé ¿¬±¸ÁøÀº ½Ç¸®ÄÜ ¿þÀÌÆÛÀÇ Àü¸éºÎ¿¡ ºí·¢ ½Ç¸®ÄÜÀ¸·Î ¾Ë·ÁÁø ³ª³ëÅؽºÃ³¸¦ Àû¿ëÇÏ¿´´Ù.

¹Ý´ëÂÊ¿¡, ÀÌµé ¿¬±¸ÁøÀº ÃÖ´ë Àü¹æÇâ ³»ºÎ ¹Ý»ç¸¦ º¸À̵µ·Ï µðÀÚÀÎµÈ Æ÷Åä´Ð À¯Àüü ÈÄ¸é ¹Ý»ç±â·Î ÄÚÆÃµÈ ·£´ý ÇǶó¹Ìµå ¸ð¾çÀÇ ÅؽºÃ³¸¦ Á¦ÀÛÇÏ¿´´Ù. 35 ¸¶ÀÌÅ©·Î¹ÌÅÍ º¸´Ù ´õ ¾ãÀº ¿þÀÌÆÛ·Î ¿¬±¸ÁøÀº Æ÷Åä´Ð ¹Ý»ç±â·Î´Â 99% ±×¸®°í Àº ÈÄ¸é ¹Ý»ç±â·Î´Â 99.8%ÀÇ ÀÌ·ÐÀû Èí¼ö ÇÑ°è°ª¿¡ µµ´ÞÇÏ¿´´Ù. ÀÌ·± °íÀüÀûÀÎ ÀÌ·Ð Èí¼ö ÇÑ°èÄ¡´Â 400³ª³ë¹ÌÅÍ¿Í 1200³ª³ë¹ÌÅÍ »çÀÌÀÇ ³ÐÀº ±¤½ºÆåÆ®·³ »çÀÌÀÇ °ªÀÌ´Ù.

°áÁ¤Áú ½Ç¸®ÄÜ Å¾ç ÀüÁö¿¡¼­ µ¨ÇÁÆ® ±â¼ú ´ëÇÐÀÇ ±¤Æ÷ȹ ¹æ¹ýÀÇ ¼º°øÀûÀÎ ±¸ÇöÀº ³ª³ë ÅؽºÃ³ Àü¸éºÎÀÇ ÀûÇÕÇÑ Ç¥¸é ¾ÈÁ¤È­(passivation)¸¦ ÇÊ¿ä·Î ÇÑ´Ù. À̸¦ À§Çؼ­, ÀÌµé ¿¬±¸ÁøÀº ¿­Àû ½Ç¸®ÄÜ »êÈ­Ãþ ¹× »êÈ­ ¾Ë·ç¹Ì´½ ¾ÈÁ¤ÃþÀ» °³¹ßÇÏ¿´´Ù. ¶Ù¾î³­ Ç¥¸é ¾ÈÁ¤È­ ¹æ¹ýÀ¸·Î ÀÌµé ¿¬±¸ÁøÀÇ ÅÂ¾ç ¿¡³ÊÁö Æ÷ȹ ±â¼úÀº ¸Å¿ì È¿À²ÀûÀ̸ç Àú·ÅÇÑ ±Ø¹Ú¸· °áÁ¤Áú Â÷¼¼´ë ½Ç¸®ÄÜ Å¾ç ÀüÁö¸¦ ½ÇÇöÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀ» Á¦°øÇÏ¿© ÁÙ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
 
[Ãâó : KISTI ¹Ì¸®¾È(http://mirian.kisti.re.kr) ¡º±Û·Î¹úµ¿Çâºê¸®ÇÎ(GTB)¡»2014. 03. 03]
 
[¿ø¹®º¸±â]
 
Maximum light trapping in solar cells
 
Maximum light trapping in solar cells

Researchers at TU Delft have opened the way for the realization of the next generation of high-efficiency, cost-effective and ultra-thin crystalline silicon solar cells. They are the first in the world to come very close (99.8%) to the theoretical limit of absorption enhancement (light trapping) in a broad light spectrum range. Their article on light management in ultra-thin silicon is accepted for publication in the journal ACS Photonics.
 
PhD-student Andrea Ingenito of the Photovoltaic Materials and Devices (PVMD) group at TU Delft has experimentally demonstrated the theoretical limit of the enhancement of light absorption in a thin semiconductor material. Ingenito used wafers of crystalline silicon and experimentally proved the theoretical prediction of the maximal enhancement of light absorption in a semiconductor material. He is the first in the world to come very close (99.8%) to the theoretical limit of absorption enhancement in a broad light spectrum range. An experimental demonstration of this absorption enhancement limit in solar cells has been elusive for the last thirty years.
 
The PVMD group at TU Delft (Faculty of EEMCS) has world-leading expertise in the design, fabrication, and implementation of light trapping structures in the solar cells. The researchers in the group managed to develop an advanced metal-free light trapping scheme for crystalline silicon wafers. At the front side of the silicon wafers they applied a nano-texture known as black-silicon. At the rear side, they implemented a random pyramidal texture coated with a photonic Dielectric Back Reflector which was designed to exhibit maximal and omni-directional internal reflectance. For wafers thinner than 35 ¥ìm the researchers achieved more than 99% (with the photonic reflector) and up to 99.8% (with the silver back reflector) of the theoretical classical absorption limit in the broad light spectrum from 400 to 1200 nm.
 
Successful implementation of TU Delft's light trapping scheme in crystalline silicon solar cells requires an adequate surface passivation of the front nano-texture. For this purpose, the researchers at the PVMD group have developed thermal silicon oxide and aluminium oxide passivation layers. TU Delft's trapping scheme together with excellent surface passivation opens the way for the realization of the next generation of high-efficiency, cost-effective and ultra-thin crystalline silicon solar cells.
 
Ingenito's article in ACS Photonics was co-authored by supervisors prof. dr. Miro Zeman and dr. Olindo Isabella. The research was carried out in the AdLight project (Advanced light trapping for thin and highly efficient silicon solar cells) funded by Agentschap NL. Solland and ECN have been the partners in the project.
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] ¸ñÁúºÎÀÇ ³ª³ë±â°ø È°¿ëÇÑ À½¿ë¼ö ÇÊÅÍ
´ÙÀ½±Û [ÀϺ»] ¿øÀÚ·ÂÀº ÀϺ»ÀÇ Áß¿äÇÑ Àü·Â¿ø
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.