Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[ºÏ¾Æ¸Þ¸®Ä«] [2014] [¹Ì±¹] Àü ¼¼°è ź¼Ò ¼øȯÀÇ ÇÙ½ÉÀÎ ÇØ¾ç ¸ÔÀÌ »ç½½
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2014-03-18 Á¶È¸¼ö 1067
ÆÄÀÏ÷ºÎ
[¹Ì±¹] Àü ¼¼°è ź¼Ò ¼øȯÀÇ ÇÙ½ÉÀÎ ÇØ¾ç ¸ÔÀÌ »ç½½
 
Çؾ翡¼­ ³ë·ÉÀ¸·Î Á×´Â °ÍÀº ¾Æ¹«°Íµµ ¾ø´Ù. ¸ðµç °ÍÀº ¼·ÃëµÇ°í ³²¾Æ ÀÖ´Â °Í ¸ðµÎ´Â Æó±âµÈ´Ù. ±×·¯³ª ÀÌ·¯ÇÑ Æó±â¹°ÀÌ Áß¿äÇÏ´Ù°í ¹Ì±¹ Ķ¸®Æ÷´Ï¾Æ ´ëÇÐ »êŸ¹Ù¹Ù¶ó Ä·ÆÛ½º(UCSB; University of California, Santa Barbara) »êÇÏ Áö±¸ ¿¬±¸¼Ò(Earth Research Institute) Ã¥ÀÓÀÚÀÎ ÇؾçÇÐÀÚÀÎ David SiegelÀº ¹àÇû´Ù.

Àü ¼¼°è ź¼Ò ¼øȯ(global carbon cycle)¿¡¼­ ÇؾçÀÇ ¿ªÇÒÀ» ¿¬±¸ÇÑ »õ·Î¿î ¿¬±¸¿¡¼­ Siegel°ú ±×ÀÇ µ¿·á ¿¬±¸ÁøÀº ÇؾçÀÇ °¡Ä¡¿¡ ´ëÇÏ¿© ´Ù·ç¾ú´Ù. ¿¬±¸ÁøÀº ¸ÔÀ̻罽ÀÇ ÇϺο¡ ÀÖ´Â ÀÛ°í ¹Ì¼¼ÇÑ µ¿¹°¼º ÇöûÅ©Åæ°ú ½Ä¹°¼º ÇöûÅ©ÅæÀÇ »ýÈ°Áֱ⸦ Áö±¸ Çؾç ź¼Ò ¼öÁö¸¦ Æò°¡Çϱâ À§ÇÏ¿© »õ·Î¿î ¿ªÇÐ ¸ðµ¨(mechanistic model)¿¡ ÅëÇÕÇß´Ù. ¿¬±¸ÁøÀÇ ¿¬±¸ °á°ú´Â Global Biogeochemical Cycles Àú³Î¿¡ ¿Â¶óÀÎ ÆÇÀ¸·Î ¹ßÇ¥µÆ´Ù.

¿¬±¸ÁøÀº ¿¬±¸ÁøÀÌ °³¹ßÇÑ ¸ÔÀ̸Á ±â¹Ý ¸ðµ¨(food-web-based model)À» À¯µµÇϱâ À§ÇÏ¿© ÀÏÂ÷ ¼ø »ý»ê·®(NPP; net primary production)ÀÇ °áÁ¤À» Æ÷ÇÔÇÑ ÀΰøÀ§¼º °üÃøÀ» »ç¿ëÇß´Ù. NPP´Â ½Ä¹°¼º ÇöûÅ©Åæ¿¡ ÀÇÇØ ¼ö¿ë¼º ÀÌ»êȭź¼Ò·ÎºÎÅÍ À¯±â¹°À» »ý»êÇÏ´Â ¼ø »ý»êÀ» ÀǹÌÇÑ´Ù. ¿¬±¸ÁøÀº À¯±â¹°ÀÌ °¡¶ó¾É´Â °Í, ÁÖ·Î Á¶·ùÀÇ ÃàÀû°ú µ¿¹°¼º ÇöûÅ©ÅæÀÇ ¹è¼³¹°À» ÅëÇÏ¿© ÀϾ´Â ¼ö±¤´ë(euphotic zone, Àϱ¤ÀÌ Àß µå´Â »óÃþ Çؾç)·ÎºÎÅÍ À¯±â ź¼Ò¸¦ ¼öÃâÇÏ´Â ÇؾçÀÇ »ý¹°ÇÐÀû ÆßÇÁ(biological pump)¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú´Ù. ÀÏ´Ü À¯±â¹°ÀÌ ¼ö±¤´ë¸¦ ¶°³ª ÇØ¾ç ±íÀº °÷¿¡ °¡¶ó¾ÉÀ» ¶§, ź¼Ò´Â ÇÑ °èÀý µ¿¾È ¶Ç´Â ¼ö¼¼±â µ¿¾È °Ý¸®µÉ ¼ö ÀÖ´Ù.

¿¬±¸ÁøÀº ÀÌ ¿¬±¸¿¡¼­ ÀΰøÀ§¼º °üÃøÀ» ÀÌ¿ëÇÏ¿© »ý¹°ÇÐÀû ÆßÇÁÀÇ È¿À²°ú °­µµ¸¦ ¸ð´ÏÅ͸µÇϴ ù ´Ü°è¸¦ »ý¼ºÇß´Ù°í UCSB »êÇÏ Áö¸®Çаú Çؾç°úÇÐ ±³¼öÀÎ SiegelÀº ¹àÇû´Ù. »õ·Î¿î Á¢±ÙÀº ÇØ¾ç ¸ÔÀ̸ÁÀÇ ¿ªÇÐÀ» °í·ÁÇÏÁö ¾Ê°í ½ÇÇè¿¡ ÀÇÁ¸ÇÑ ÀÌÀüÀÇ ¹æ¹ý°ú´Â Â÷º°È­µÈ´Ù°í SiegelÀº ¹àÇû´Ù. ÀÌÀü ¿¬±¸ÀÇ ½ÇÇèÀû Á¢±ÙÀ¸·Î »ý¼ºµÈ °ø°£/½Ã°£ À¯ÇüÀº ÇؾçÀÌ ¾î¶»°Ô ÀÛµ¿ÇÏ´ÂÁö¿¡ ´ëÇÏ¿© ÇؾçÇÐÀÚµéÀÌ »ý°¢ÇÏ´Â °Í°ú ÀÏÄ¡ÇÏÁö ¾Ê´Â´Ù°í ±×´Â ÁöÀûÇß´Ù.

ź¼Ò´Â ´ë±â Áß¿¡ Á¸ÀçÇÏ°í, Åä¾ç, ÇØ¾ç ¹× Áö±¸ Áö°¢¿¡ ÀúÀåµÈ´Ù. ÀÌ·¯ÇÑ ÀúÀå¼Ò »çÀÌ¿¡ ÀϾ´Â ź¼ÒÀÇ À̵¿À» È帧(flux)À̶ó°í ºÎ¸¥´Ù. ¿¬±¸Áø¿¡ µû¸£¸é, ÇؾçÀº ÀúÀå, ¼ö¼Û ¹× ź¼Ò ±¸¼º¹°ÁúÀÇ º¯È¯ µîÀ» ÅëÇÏ¿© Áö±¸ ź¼Ò ¼øȯ¿¡ À־ Áß¿äÇÑ ±¸¼º ¿ø¼ÒÀÌ´Ù.

ÀÌ·¯ÇÑ Åº¼Ò È帧À» Á¤·®È­ÇÏ´Â °ÍÀº º¯È­ÇÏ´Â ±âÈÄ¿¡ ´ëÇÑ ´ë±âÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇÏ´Â µ¥ Áß¿äÇÏ´Ù°í SiegelÀº ¹àÇû´Ù. ¿¬±¸ÁøÀÌ ÇØ¾ç »ö»óÀÇ ÀΰøÀ§¼º ÃøÁ¤À¸·ÎºÎÅÍ ¾òÀº »ê¶õµÈ ½ÅÈ£¸¦ ºÐ¼®ÇÔÀ¸·Î½á, ¾ó¸¶³ª ¸¹Àº ¹ÙÀÌ¿À¸Å½º°¡ ¸Å¿ì Å« ¶Ç´Â ¸Å¿ì ÀÛÀº ÀÔÀÚ·Î »ý¼ºµÇ´Â°¡¸¦ °è»êÇÏ´Â ±â¼úÀ» °³¹ßÇÒ ¼ö ÀÖ¾ú´Ù°í SiegelÀº ¹àÇû´Ù.

¿¬±¸ÁøÀÇ °á°ú´Â ¿¬°£ 6 Æ䟱׷¥(petagram, Pg)ÀÇ Æò±Õ Áö±¸ ź¼Ò ¼öÃâ È帧À» ¿¹ÃøÇß´Ù. ±â°¡ÅæÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Â Æ䟱׷¥Àº 100Á¶ ±×·¥¿¡ ÇØ´çÇÑ´Ù. ÀÌ·¯ÇÑ ¼öÄ¡´Â ¾öû³­ ¾çÀ̸ç, È­¼® ¿¬·áÀÇ ¿¬°£ Àü ¼¼°è ¹èÃâ¿¡ »óÀÀÇÏ´Â ¾çÀÌ´Ù. ÇöÀç È­¼® ¿¬·á ¿¬¼Ò´Â ¿¬°£ ¾à 9 PgÀÇ ¾çÀÌ ´ë±â·Î È帣°í ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.

ÀÌ°ÍÀº ¾ó¸¶³ª Å©°í ÀÛÀº ÇöûÅ©ÅæÀÌ Á¸ÀçÇϴ°¡ÀÇ ¹®Á¦À̸ç, ¾î¶² ¿¡³ÊÁö È帧ÀÌ ¸ÔÀ̸Á¿¡ Àִ°¡ÀÇ ¹®Á¦¶ó°í SiegelÀº ¹àÇû´Ù. ÀÌ°ÍÀº ´Ü¼øÇÏ´Ù. ÀÌ°ÍÀº ½ÇÁ¦ ´©°¡ ¹«¾ùÀ» ¸Ô´Â°¡ÀÇ ¹®Á¦ÀÏ »Ó ¾Æ´Ï¶ó, °¢°¢ÀÇ »ý»ê¼º°ú ¹ÙÀÌ¿À¸Å½º¿¡ ´ëÇÑ ¾ÆÀ̵ð¾î¸¦ °¡Áö°í ÀÖ´Ù. µû¶ó¼­ ¿¬±¸ÁøÀº ¸ðµÎ ÀΰøÀ§¼º ÀÚ·á¿¡¼­ À¯·¡ÇÑ NPP, ½Ä¹°¼º ÇöûÅ©Åæ ¹ÙÀÌ¿À¸Å½º ¹× Áú·® ºÐ¹è¸¦ °ø½ÄÈ­Çϱâ À§ÇÑ Å©±â ±¸Á¶ µîÀ» °áÁ¤ÇÏ´Â °³¼±µÈ ¹æ¾È¿¡ ´ëÇÏ¿© ¿¬±¸Çß´Ù°í SiegelÀº ¹àÇû´Ù.

¿¬±¸ÁøÀº »ý¹°ÇÐÀû ÆßÇÁ°¡ ¿î¿µµÇ´Â »óŸ¦ º¸´Ù ´õ Àß ÀÌÇØÇϱâ À§ÇÏ¿© °í¾ÈµÈ ÁÖ¿ä ÇöÀå ÇÁ·Î±×·¥À» °èȹÇÔÀ¸·Î½á ¿¬±¸ÁøÀÇ ¸ðµ¨À» ÇÑ ´Ü°è ÁøÈ­½ÃÅ°´Â ÁßÀÌ´Ù. SiegelÀº »ý¹°ÇÐÀû ÆßÇÁÀÇ ÀÌÇØ°¡ Áß¿äÇÏ´Ù°í °á·ÐÁö¾ú´Ù. ¿ì¸®°¡ ź¼Ò°¡ ¾îµð·Î À̵¿ÇÏ´ÂÁö, ¾ó¸¶³ª ¸¹Àº ź¼Ò°¡ À¯±â¹°·Î Èê·¯°¡´ÂÁö, ÀÌ·¯ÇÑ À¯±â¹°ÀÌ °ø°³-ÇؾçÀÇ ÀÌ»êȭź¼ÒÀÇ ±³È¯¿¡ ¾î¶»°Ô ¿µÇâÀ» ³¢Ä¡´ÂÁö ¹× ¿ì¸®°¡ ¹è±â°üÀ¸·Î ¹èÃâÇÏ°í ÀÖ´Â È­¼® ¿¬·á¿¡ ¾î¶² ÀÏÀÌ ÀϾ´ÂÁö µî¿¡ ´ëÇÏ¿© ÀÌÇØÇÒ ÇÊ¿ä°¡ ÀÖ´Ù°í SiegelÀº ¹àÇû´Ù.
 
[Ãâó : KISTI ¹Ì¸®¾È(http://mirian.kisti.re.kr) ¡º±Û·Î¹úµ¿Çâºê¸®ÇÎ(GTB)¡»2014. 03. 14]
 
[¿ø¹®º¸±â]
 
Ocean food web is key in the global carbon cycle
 
Nothing dies of old age in the ocean. Everything gets eaten and all that remains of anything is waste. But that waste is pure gold to oceanographer David Siegel, director of the Earth Research Institute at UC Santa Barbara.
 
In a study of the ocean's role in the global carbon cycle, Siegel and his colleagues used those nuggets to their advantage. They incorporated the lifecycle of phytoplankton and zooplankton — small, often microscopic animals at the bottom of the food chain —into a novel mechanistic model for assessing the global ocean carbon export. Their findings appear online in the journal Global Biogeochemical Cycles.
 
The researchers used satellite observations including determinations of net primary production (NPP) — the net production of organic matter from aqueous carbon dioxide (CO2) by phytoplankton — to drive their food-web-based model. The scientists focused on the ocean's biological pump, which exports organic carbon from the euphotic zone — the well-lit, upper ocean — through sinking particulate matter, largely from zooplankton feces and aggregates of algae. Once these leave the euphotic zone, sinking into the ocean depths, the carbon can be sequestered for a season or for centuries.
 
"What we've done here is create the first step toward monitoring the strength and efficiency of the biological pump using satellite observations," said Siegel, who is also a professor of marine science in UCSB's Department of Geography. "The approach is unique in that previous ways have been empirical without considering the dynamics of the ocean food web." The space/time patterns created by those empirical approaches are inconsistent with how oceanographers think the oceans should work, he noted.
 
Carbon is present in the atmosphere and is stored in soils, oceans and the Earth's crust. Any movement of carbon between — or in the case of the ocean, within — these reservoirs is called a flux. According to the researchers, oceans are a central component in the global carbon cycle through their storage, transport and transformations of carbon constituents.
 
"Quantifying this carbon flux is critical for predicting the atmosphere's response to changing climates," Siegel said. "By analyzing the scattering signals that we got from satellite measurements of the ocean's color, we were able to develop techniques to calculate how much of the biomass occurs in very large or very small particles."
 
Their results predict a mean global carbon export flux of 6 petagrams (Pg) per year. Also known as a gigaton, a petagram is equal to one quadrillion (1015) grams. This is a huge amount, roughly equivalent to the annual global emissions of fossil fuel. At present, fossil fuel combustion represents a flux to the atmosphere of approximately 9 Pg per year.
 
"It matters how big and small the plankton are, and it matters what the energy flows are in the food web," Siegel said. "This is so simple. It's really who eats whom but also having an idea of the biomasses and productivity of each. So we worked out these advanced ways of determining NPP, phytoplankton biomass and the size structure to formulate mass budgets, all derived from satellite data."
 
The researchers are taking their model one step further by planning a major field program designed to better understand the states in which the biological pump operates. "Understanding the biological pump is critical," Siegel concluded. "We need to understand where carbon goes, how much of it goes into the organic matter, how that affects the air-sea exchanges of CO2 and what happens to fossil fuel we have emitted from our tailpipes."
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [NASA] Àå±âÀûÀ¸·Î Áö¼ÓµÉ °ÍÀ¸·Î º¸ÀÌ´Â Áö±¸ ¿Â³­È­
´ÙÀ½±Û [ºê¶óÁú] °Ç¼³½ÃÀå µ¿Çâ
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.