Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[¾Æ½Ã¾Æ] [2014] [´ë¸¸] ½Ç¸®ÄÜ ±âÆÇ À§¿¡ Á÷Á¢ÀûÀ¸·Î ¼ºÀåµÈ InGaAs ±Ý¼Ó »êÈ­¸· ¹ÝµµÃ¼ Ä¿ÆнÃÅÍ
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2014-04-25 Á¶È¸¼ö 1199
ÆÄÀÏ÷ºÎ
[´ë¸¸] ½Ç¸®ÄÜ ±âÆÇ À§¿¡ Á÷Á¢ÀûÀ¸·Î ¼ºÀåµÈ InGaAs ±Ý¼Ó »êÈ­¸· ¹ÝµµÃ¼ Ä¿ÆнÃÅÍ
 
 
´ë¸¸ ¿¬±¸ÁøÀº ½Ç¸®ÄÜ À§¿¡ ³·Àº °è¸é Æ®·¦ ³óµµ(interface trap density)¸¦ °¡Áø Àε㠰¥·ý ºñÈ­¹°(InGaAs) ±Ý¼Ó »êÈ­¸· ¹ÝµµÃ¼ Ä¿ÆнÃÅÍ(metal-oxide-semiconductor capacitor, MOSCAP)¸¦ Á¦Á¶Çϴµ¥ ¼º°øÇß´Ù. InGaAs´Â °íÁÖÆļö ºÐ¾ß¿¡ ¸Å¿ì À¯¿ëÇÏ°Ô Àû¿ëµÉ ¼ö ÀÖ´Â ³ôÀº À̵¿µµ¸¦ °¡Áø ¹ÝµµÃ¼ÀÌ´Ù.

³·Àº Æ®·¦ ³óµµ¸¦ °¡Áø MOSCAP´Â °í¼º´É ±Ý¼Ó »êÈ­¸· Àü°è È¿°ú Æ®·£Áö½ºÅ͸¦ Á¦Á¶Çϴµ¥ Áß¿äÇÏ´Ù. MOSCAP´Â ¼Ò½º/µå·¹ÀÎ Á¢Á¡ÀÌ ¾ø´Â ±Ý¼Ó »êÈ­¸· Àü°è È¿°ú Æ®·£Áö½ºÅÍÀÌ´Ù. À¯Àüü/¹ÝµµÃ¼ °è¸é¿¡¼­ Æ®·¦ ³óµµ¸¦ °¨¼Ò½ÃÅ°´Â °ÍÀº ±Ý¼Ó »êÈ­¸· Àü°è È¿°ú Æ®·£Áö½ºÅÍ¿¡¼­ ¿ì¼öÇÑ Á¤Àü±â Á¦¾î¸¦ Çϴµ¥ ¸Å¿ì Áß¿äÇÏ´Ù.

InGaAs ÇìÅ׷α¸Á¶´Â Àεã ÀÎÈ­¹°(InP) ±âÆÇ À§¿¡¼­ ¼ºÀåµÇ°í ±× ÈÄ¿¡ ¿þÀÌÆÛ º»µù ±â¼ú¿¡ ÀÇÇؼ­ ½Ç¸®ÄÜ ±âÆÇÀ¸·Î Àü»çµÈ´Ù. National Chiao-Tung University¿Í TSMC(Taiwan Semiconductor Manufacturing Company)ÀÇ ¿¬±¸ÁøÀº ±Ý¼Ó-À¯±â È­ÇÐ ±â»ó ÁõÂø¿¡ ÀÇÇؼ­ 300 mmÀÇ (100) ½Ç¸®ÄÜ ±âÆÇ À§¿¡ Á÷Á¢ÀûÀ¸·Î InGaAs ÇìÅ׷α¸Á¶(±×¸² 1)¸¦ ¼ºÀå½Ãų ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀ» °³¹ßÇß´Ù.

GaAsÀÇ ÃÖÃÊÀÇ ¹öÆÛ ÃþÀº ½Ç¸®ÄÜ, InP ¹öÆÛ Ãþ, °ÝÀÚ Á¤ÇÕµÈ In0.53Ga0.47As ¡®Ã¤³Î¡¯ °£ÀÇ °ÝÀÚ ºÒÀÏÄ¡¸¦ ÇؼÒÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú´Ù. GaAs/InP´Â 840 nmÀÇ µÎ²²¸¦ °¡Áø´Ù. À̹ø ¿¬±¸Áø¿¡ µû¸£¸é, ÀÌ°ÍÀº Si ±âÆÇ À§¿¡ In0.53Ga0.47As ¸¦ ¼ºÀå½ÃÄѼ­ ¸¸µç °¡Àå ¾ãÀº ¹öÆÛ ÃþÀÌ´Ù.

»ùÇà ºÐ¼®À¸·Î ÀÌ·± ÀüÀ§(dislocation)°¡ GaAs Ãþ ¼Ó¿¡¼­ ÁÖ·Î Æ÷ÁýµÈ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. X-¼± »ê¶õ ÃøÁ¤À¸·Î In0.53Ga0.47As Ãþ ¼ÓÀÇ ÀüÀ§°¡ 2?3 * 109/cm2¶ó´Â °ÍÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. In0.53Ga0.47As Ç¥¸éÀÇ ¿øÀÚÈû Çö¹Ì°æ ÃøÁ¤À¸·Î 5¥ìm * 5¥ìm À§¿¡ Æò±ÕÀûÀ¸·Î 1.94 nmÀÇ ÀÚ½ÂÆò±ÕÆò¹æ±Ù °ÅÄ¥±â(root-mean square roughness)¸¦ °¡Á³´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ¾ú´Ù. »ó¿Â Ȧ À̵¿µµ ÃøÁ¤À¸·Î InP ±âÆÇ À§¿¡¼­ ¼ºÀåµÈ InGaAs¿Í À¯»çÇÑ 5000cm2/V-s¸¦ ÃÊ°úÇÏ´Â °ªÀ» °¡Áø´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ¾ú´Ù.

MOSCAP´Â Ç¥¸éó¸®, ¾Ë·ç¹Ì´½ »êÈ­¹° ¹× °ÔÀÌÆ® ±Ý¼Ó ÁõÂø, ¿È Á¢ÃË(Ohmic contact) Çü¼º¿¡ ÀÇÇؼ­ Á¦Á¶µÇ¾ú´Ù. 8 nmÀÇ µÎ²¨¿î »êÈ­¹°Àº 300¡É¿¡¼­ ¿øÀÚÃþ ÁõÂøÀ» »ç¿ëÇؼ­ ¸¸µé¾îÁ³°í, ÀÌ ÈÄ¿¡ Áú¼Ò °¡½º¿¡¼­ 10ºÐ µ¿¾È ¾î´Ò¸µÀ» ¼öÇàÇÏ¿´´Ù. °ÔÀÌÆ® ±Ý¼Ó ÃþÀº ´ÏÄÌ°ú ±ÝÀ¸·Î ±¸¼ºµÇ¾ú´Ù. ¿È Á¢ÃËÀº ºÒÈ­¼ö¼Ò»êÀ» °¡Áø »êÈ­¹°À» ¿¡ÄªÇؼ­ InGaAs Ç¥¸éÀ» µå·¯³»°í, ±Ý/°Ô¸£¸¶´½/´ÏÄÌ/±Ý ±Ý¼Ó Á¢ÃËÀ» ÁõÂøÇÏ°í ¾î´Ò¸µÇÔÀ¸·Î½á Á¦Á¶µÇ¾ú´Ù.

Ä¿ÆнÃÅϽº vs Àü¾Ð ÃøÁ¤(±×¸² 2)¿¡ µû¸£¸é, ¾Ë·ç¹Ì´½ »êÈ­¹° ¾î´Ò¸µ ÇÁ·Î¼¼½º´Â 500¡É(1.45?1.62 * 1012/cm2-eV)¿¡¼­ ¾î´Ò¸µµÈ À¯»çÇÑ »ùÇðú ºñ±³ÇßÀ» ¶§ 400¡ÆC(5.44?5.87 * 1011/cm2-eV)¿¡¼­ ´õ ÀûÀº °è¸é Æ÷ÁýÀ» °¡Áø´Ù. 400¡ÆC ¾î´Ò¸µÀ¸·Î, ÁÖÆļö ºÐ»êÀº ÀÛ°í ¿ì¼öÇÑ È÷½ºÅ׸®½Ã½º Ư¼ºÀ» °¡Áø´Ù.

À̹ø ¿¬±¸ÁøÀº Al2O3/InGaAs/Si MOSCAPÀÇ ¼º´ÉÀÌ °ÝÀÚ Á¤ÇÕµÈ InP À§ÀÇ Al2O3/InGaAs¿Í À¯»çÇÏ´Ù´Â °á·ÐÀ» ³»·È´Ù. ÀÌ ¿¬±¸°á°ú´Â MOCVD¿¡ ÀÇÇؼ­ 12ÀÎÄ¡ÀÇ Si ±âÆÇ À§¿¡ InGaAs ±â¹ÝÀÇ ¹°ÁúÀ» ÁýÀû½ÃÅ°´Â °ÍÀÌ °í¼º´É ÀúÀü·Â ³í¸® ÀåÄ¡¸¦ Á¦Á¶Çϴµ¥ À¯¿ëÇÏ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. ÀÌ ¿¬±¸°á°ú´Â Àú³Î Applied Physics Express¿¡ ¡°Low interface trap density Al2O3/In0.53Ga0.47As In0.53Ga0.47As MOS capacitor fabricated on MOCVD-grown InGaAs epitaxial layer on Si substrate¡±¶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù.

±×¸² 1. Åõ°úÀüÀÚ Çö¹Ì°æ À̹ÌÁö. (a) InGaAs/Si ÇìÅ׷α¸Á¶, (b) InGaAs ä³Î ¿µ¿ª.
±×¸² 2. ½Ç¸®ÄÜ µµÇÎµÈ InGaAs ÃþÀ» °¡Áø »ùÇÃÀÇ Ä¿ÆнÃÅϽº-Àü¾Ð °î¼±(400 ¡É¿¡¼­ ¾î´Ò¸µµÊ): (a) 8.0 * 1016/cm3, (b) 1.7 * 1017/cm3, (c) 6.2 * 1017/cm3.
 
[Ãâó : KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 4¿ù 25ÀÏ]
[¿ø¹®º¸±â]
 

Growing InGaAs MOSCAPs directly on (100) silicon substrates

Researchers in Taiwan have produced indium gallium arsenide (InGaAs) metal-oxide-semiconductor capacitors (MOSCAPs) with low interface trap densities directly on silicon [Yueh-Chin Lin etal, Appl. Phys. Express, vol7, p041202, 2014]. InGaAs is a high-mobility semiconductor that should improve transistor characteristics for high-frequency applications.
MOSCAPs with low trap densities are an important step towards producing high-performance MOS field-effect transistors (MOSFETs). In effect, MOSCAPs are MOSFETs without source/drain contacts. Reducing the trap density at the dielectric/semiconductor interface is vital for good electrostatic control by the gate in MOSFETs.
Often, InGaAs heterostructures are grown first on indium phosphide (InP) substrates and then transferred to silicon by wafer bonding techniques. The team from National Chiao-Tung University and Taiwan Semiconductor Manufacturing Company (TSMC) grew their InGaAs heterostructure (Figure 1) on 300mm (100) silicon (Si) substrates directly by metal-organic chemical vapor deposition (MOCVD).
Figure 1: Transmission electron micrographs of InGaAs/Si heterostructure (a) and high-resolution close-up of InGaAs channel region (b).
The first buffer layer of strained GaAs was designed to metamorphically bridge the lattice mismatch between silicon and the InP buffer and lattice-matched In0.53Ga0.47As ¡®channel¡¯. The GaAs/InP metamorphic combination was 840nm thick: ¡°the thinnest buffer for the growth of In0.53Ga0.47As on a Si substrate reported to date,¡± according to the researchers.
Analysis of the sample suggested that the dislocations were predominantly trapped in the GaAs layer. The dislocations in the In0.53Ga0.47As layer were estimated at 2−3x109/cm2, according to x-ray diffraction (XRD) measurements. Atomic force microscopy (AFM) of the In0.53Ga0.47As surface gave a root-mean square roughness of 1.94nm averaged over a 5¥ìmx5¥ìm field. This in the range given by previous In0.53Ga0.47As growth on Si with thicker GaAs/InP buffers.
Room-temperature Hall mobility measurements gave values in excess of 5000cm2/V-s, comparable to InGaAs grown on InP substrates.
The metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated by surface treatment, aluminium oxide and gate metal deposition, and Ohmic contact formation. The 8nm-thick oxide was applied using atomic layer deposition (ALD) at 300¡ÆC, followed by a 10-minute anneal process in nitrogen gas. The gate metal layers consisted of nickel and gold. The Ohmic contact was constructed by etching the oxide with hydrofluoric acid, revealing the InGaAs surface, and then depositing and annealing gold/germanium/nickel/gold metal contacts.
Figure 2: Capacitance-voltage curves for samples with silicon-doped InGaAs layers with oxide annealed at 400¡ÆC: (a) 8.0x1016/cm3, (b) 1.7x1017/cm3, (c) 6.2x1017/cm3.
According to capacitance versus voltage measurements (Figure 2), the aluminium oxide anneal process gave fewer interface traps at 400¡ÆC (5.44−5.87x1011/cm2-eV), compared with a similar sample annealed at 500¡ÆC (1.45−1.62x1012/cm2-eV). With 400¡ÆC annealing, the frequency dispersion was small and the hysteresis ¡°excellent¡± (Table 1).
Table 1: Parameters of InGaAs MOSCAPs with Al2O3 annealing at 400¡ÆC.
The researchers conclude the performance of their Al2O3/InGaAs/Si MOSCAPs was comparable to Al2O3/InGaAs on lattice-matched InP. ¡°The results demonstrate the potential of integrating an InGaAs-based material on a 12-inch Si substrate by MOCVD for future high-performance low-power logic device applications and mainstream manufacturing.¡±
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] Big Coppitt, 2013 Domestic Wastewater Plant Operations Excellence Award ¼ö¿©
´ÙÀ½±Û [¿µ±¹]´õ Àú·ÅÇÏ°í, ´õ ÁÁÀº ±¤¼¾¼­
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.