Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[³²¾Æ¸Þ¸®Ä«] [2014] [Ä¥·¹] ¾Èµ¥½º »ê¸ÆÀ» Çü¼ºÇÑ ÁÖ±âÀû ÆÞ½º Çö»ó
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2014-04-28 Á¶È¸¼ö 645
ÆÄÀÏ÷ºÎ
[Ä¥·¹] ¾Èµ¥½º »ê¸ÆÀ» Çü¼ºÇÑ ÁÖ±âÀû ÆÞ½º Çö»ó
 
 

°úÇÐÀÚµéÀÌ ¾Èµ¥½º(Andes) »ê¸Æ°ú ÁÖº¯ÀÇ ³ôÀº »ê¸ÆÀÌ ¾î¶»°Ô Çü¼ºµÆ´ÂÁö¸¦ ÀÌÇØÇϱâ À§ÇØ ¿À·§µ¿¾È ³ë·ÂÇÏ´Â °¡¿îµ¥, ·Îü½ºÅÍ ´ëÇб³(University of Rochester) Ä«¸»¶ó °¡Áö¿Â(Carmala Garzione) ȯ°æ°úÇб³¼ö¿Í µ¿·áµéÀº ÀÌ ¹Ì½ºÅ͸®¿¡ ´ëÇÑ ½Ç¸¶¸®¸¦ Á¦°øÇÏ°í ÀÖ´Ù.
 
Áö±¸Ç༺°úÇз¹ÅÍ(Earth and Planetary Science Letters)¿¡ ¹ßÇ¥µÈ ÃÖ±Ù ³í¹®¿¡¼­ °¡Áö¿Â ±³¼ö´Â Áß¾Ó ¾Èµ¥½º »ê¸ÆÀÇ ¾ËƼÇ÷¡³ë(Altiplano) °í¿øÀÌ ¿¬¼ÓµÇ´Â ±Þ¼ÓÇÑ ºÐÃâÀ» ÅëÇØ Çü¼ºµÆÀ½À» ¼³¸íÇÏ°í ÀÖ´Ù.
 
°¡Áö¿Â ±³¼ö´Â ¡°À̹ø ¿¬±¸´Â ÀüÅëÀûÀ¸·Î ¿©°ÜÁø Áö¼ÓÀûÀÌ°í Á¡Â÷ÀûÀΠǥ¸é À¶±â°¡ ¾Æ´Ñ, ºü¸¥ ÁÖ±âÀû ÆÞ½º¸¦ ÅëÇØ °í¿øÀÌ Çü¼ºµÆÀ½À» º¸¿©ÁÖ´Â Áõ°Å¸¦ Á¦½ÃÇÑ´Ù¡±°í ÀüÇϸ鼭 ¡°ÁöÁúÇÐÀûÀ¸·Î ºü¸£´Ù´Â °ÍÀº ¼ö¹é¸¸³â µ¿¾È¿¡ 1ų·Î¹ÌÅÍ ¶Ç´Â ±× ÀÌ»óÀÇ »ó½ÂÀ» ÀǹÌÇϴµ¥ ÀÌ´Â ¸Å¿ì ÀλóÀû¡±À̶ó°í ÀüÇß´Ù.
 
¾Èµ¥½º »ê¸ÆÀº ³²¹Ì ´ë·úÆÇ ¾Æ·¡ÀÇ ³ªÁîÄ«(Nazca) ÇؾçÆÇÀÌ ¹Ì²ø¾îÁ® ¼ºÀåÇÏ´Â °ÍÀ¸·Î ÀÌÇصǰí ÀÖÀ¸¸ç ÀÌ ¶§¹®¿¡ Áö±¸ Áö°¢Àº Á¢°í ²÷¾îÁö´Â Çö»ó¿¡ ÀÇÇØ Âª°í ¾ã¾ÆÁø´Ù. ÀÌ Çö»óÀº µÎ °¡Áö Áú¹®À» ¸¸µç´Ù: ¾Èµ¥½º´Â ¾ó¸¶³ª ºü¸£°Ô ÇöÀç ³ôÀÌ·Î À¶±âÇߴ°¡, »ó½ÂÀ» ÀÏÀ¸Å°´Â ½ÇÁ¦ ÇÁ·Î¼¼½º´Â ¹«¾ùÀΰ¡ ÇÏ´Â Á¡ÀÌ´Ù.
 
¸î ³â Àü, °¡Áö¿Â ±³¼ö¿Í µ¿·áµéÀº Áß¾Ó ¾ËƼÇ÷¡³ë Åä¾ç¿¡¼­ º¸Á¸µÈ °í´ë Ç¥¸é ¿Âµµ¿Í °­¿ì ¼ººÐÀ» ÃøÁ¤ÇÔÀ¸·Î½á Áß¾Ó ¾Èµ¥½ºÀÇ Ç¥¸é À¶±â ½Ã±â¿Í ¼Óµµ¸¦ ÃÖÃÊ·Î ÃßÁ¤Çß´Ù. ÀÌ ¿¬±¸´Â ¡®ÁöÁúÇÐÀÚ ¿¹»óº¸´Ù ¸Å¿ì »¡¸® »ó½ÂÇÏ´Â »ê¸Æ¡¯(Mountain Ranges Rise Much More Rapidly than Geologists Expected)À̶ó´Â ³í¹®¿¡¼­ ¼Ò°³µÆ´Ù. ¾ËƼÇ÷¡³ë´Â º¼¸®ºñ¾Æ¿Í Æä·çÀÇ °í¿øÀ¸·Î °íµµ´Â Çؼö¸é¿¡¼­ 12,000ÇÇÆ®ÀÌ´Ù.
 
°¡Áö¿Â ±³¼ö´Â ¾ãÀº ´ë·úÆÇÀÌ °¡¿­µÇ¸é Áö°¢ Åä´ë¿¡¼­ ´éó·³ °Åµ¿ÇÏ´Â ³óÃàµÈ ÇϺΠÁö°¢°ú »óºÎ ¸ÇƲ ºÎºÐÀÌ ÁÖ±âÀûÀ¸·Î ºÐ¸®µÇ°í ¸ÇƲ¿¡ °¡¶ó¾É´Â´Ù°í °á·Ð ³»·È´Ù. ÀÌ ³óÃàµÈ ´éÀÌ ºÐ¸®µÇ¸é ³·Àº ¹ÐµµÀÇ »óºÎ Áö°¢Àº µÇÆ¢°í ±Þ°ÝÈ÷ »ó½ÂÇÑ´Ù.
 
±× ÀÌÈÄ °¡Áö¿Â ±³¼ö¿Í »ç¿ì½º ij·Ñ¶óÀ̳ª ´ëÇб³(University of South Carolina) Áö±¸Çؾç°úÇÐ ¾Øµå·ù ·¹À̾î(Andrew Leier) Á¶±³¼ö´Â ¾Èµ¥½ºÀÇ ´Ù¸¥ 2°³ Áö¿ª¿¡¼­ ¼öÇàµÈ ¿Âµµ±â·Ï ±â¹ýÀ» ÀÌ¿ëÇØ, ±Þ»ó½ÂÇϴ ǥ¸é À¶±â ÆÞ½º°¡ Á¤»ó Çö»ó ¶Ç´Â ¿¹¿ÜÀû Çö»ó ¿©ºÎ¸¦ °áÁ¤Çß´Ù.
 
°¡Áö¿Â ¹× ·¹ÀÌ¾î ±³¼ö´Â °­¿ì¿¡ ÇÔÀ¯µÈ ±¤¹° ¹æÇؼ®ÀÇ Åº¼Ò¿Í »ê¼Òµ¿À§¿ø¼Ò °áÇÕµÈ °Åµ¿¿¡ Æ÷Ä¿½º¸¦ µÎ°í ¿¬±¸¸¦ ¼öÇàÇß´Ù. ÀÌ ¿¬±¸´Â ¡®ºÒ¸®ºñ¾Æ, Áß¾Ó ¾Èµ¥½º »ê¸Æ¿¡ ³ªÅ¸³­ ±Þ¼ÓÇÑ Ç¥¸é À¶±âÀÇ º¹ÇÕÀûÀÎ ÆÞ½º¸¦ º¸¿©ÁÖ´Â ¾ÈÁ¤ÀûÀÎ µ¿À§¿ø¼Ò Áõ°Å¡¯(Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia)¶ó´Â ³í¹®¿¡ °ÔÀçµÆ´Ù.
 
°¡Áö¿ÂÀº ³²ºÎ ¾ËƼÇ÷¡³ë¿¡¼­ ÀÛ¾÷Çϸ鼭 Çؼö¸é¿¡ ±ÙÁ¢ÇÑ ³·Àº °íµµÀÇ °í´ë Åä¾ç¿¡ º¸Á¸µÈ ±âÈÄ ±â·ÏÀ» ¼öÁýÇß´Ù. ÀÌ Áö¿ªÀÇ ¿Âµµ´Â ¾Èµ¥½ºÀÇ ¿ª»ç¿¡¼­ ¿Â³­ÇßÀ¸¸ç ³ôÀº °íµµ¿¡¼­´Â »ê¸Æ »ó½Â°ú ÇÔ²² ¿Âµµ°¡ ³Ã°¢µÆ¾î¾ß Çß´Ù. Åä¾ç¿¡¼­ ¹ß°ßµÈ ¹æÇؼ®Àº Èñ±ÍÇÑ ¹«°Å¿î ź¼Ò(13C) ¹× »ê¼Òµ¿À§¿ø¼Ò(18O)»Ó¸¸ ¾Æ´Ï¶ó ´õ °¡º­¿î ź¼Ò(12C)¿Í »ê¼Ò µ¿À§¿ø¼Ò(16O)µµ ÇÔÀ¯ÇÏ°í ÀÖ´Ù. ¹æÇؼ®À» ÅëÇÑ °í´ë ¿ÂµµÀÇ ÃßÁ¤Àº ¹«°Å¿î µ¿À§¿ø¼Ò°¡ Çü¼ºÇÏ´Â °­ÇÑ °áÇÕ¿¡ ÀÇÁ¸ÇÏ°í ÀÖ´Ù.
 
³·Àº ¿Âµµ¿¡¼­ ¿øÀÚµéÀº ´õ¿í õõÈ÷ Áøµ¿ÇÏ°í ¹«°Å¿î µ¿À§¿ø¼ÒÀÎ 13C-18O °áÇÕÀº ´õ¿í ºÐÇØ°¡ ¾î·Á¿ì¸ç ±× °á°ú ´õ¿í ³ôÀº ³óµµÀÇ 13C-18O °áÇÕÀÌ ¹æÇؼ®¿¡¼­ ¹ß°ßµÈ´Ù. °¡Áö¿Â ±³¼ö´Â ¿Â³­ÇÑ ³·Àº °íµµ¿Í ¼­´ÃÇÑ ³ôÀº °íµµ¿¡¼­ ¹«°Å¿î µ¿À§¿ø¼Ò °áÇÕ ³óµµ¸¦ ÃøÁ¤Çß´Ù. ±× ÈÄ »çÀÌÆ® »çÀÌÀÇ ¿Âµµ Â÷À̸¦ ÀÌ¿ëÇØ Æ¯º°ÇÑ ½Ã±â¿¡ ´Ù¾çÇÑ ÃþÀÇ °íµµ¸¦ ÃßÁ¤Çß´Ù.
 
±×³à´Â ³²ºÎ ¾ËƼÇ÷¡³ë »ê¸Æ Áö¿ªÀÌ 1600¸¸³â~900¸¸³â Àü ¾à 2.5ų·Î¹ÌÅͱîÁö »ó½ÂÇßÀ½À» ¹ß°ßÇߴµ¥, ÀÌ´Â ÁöÁúÇÐÀû ½Ã°£¿¡¼­ ±Þ°ÝÇÑ ¼ÓµµÀÌ´Ù. °¡Áö¿Â ±³¼ö´Â ÆÞ½º ¹ÝÀÀÀÌ ³·Àº Áö°¢°ú »óºÎ ¸ÇƲÀÇ °æ°è¿¡¼­ ¼ºÀåÇÏ´Â ³óÃàµÈ »Ñ¸®¿Í °ü·ÃÀÌ ÀÖ´Â °ÍÀÌ ¾Æ´Ñ°¡ ÃßÃøÇÑ´Ù. ÇؾçÆÇÀÌ ´ë·úÆÇ ÇϺο¡¼­ ¹Ì²ø¾îÁú ¶§ ´ë·úÆÇÀº ª°í µÎ²¨¿öÁö¸ç ³·Àº Áö°¢ÀÇ ¾Ð·ÂÀº Áõ´ëµÈ´Ù.
 
³·Àº Áö°¢ÀÇ Çö¹«¾Ï ¼ººÐÀº ¿¡Å¬·ÎÀÚÀÌÆ®(À¯Èñ¾Ï, eclogite)·Î ºÒ¸®´Â ¸Å¿ì ³ôÀº ³óµµÀÇ ¾Ï¼®À¸·Î ÀüȯµÇ´Âµ¥, ÀÌ ¾Ï¼®ÀÌ »óºÎ Áö°¢ÀÇ ³·Àº ³óµµ¿¡¼­ ´éÀÇ ÀÛ¿ëÀ» ÇÑ´Ù. »Ñ¸®°¡ ´õ ¶ß°Å¿î ¸ÇƲ·Î ´õ ±íÀÌ À̵¿ÇÏ¸é ±Þ°ÝÇÏ°Ô Á¦°ÅµÉ ¼ö ÀÖ´Â ¿Âµµ·Î ¼ö¹é¸¸³â µ¿¾È °¡¿­µÇ°í ±× °á°ú »ê¸ÆÀº ºü¸£°Ô »ó½ÂÇÑ´Ù.
 
°¡Áö¿Â ±³¼ö´Â ¡°¿ì¸®°¡ ¾Ë°Ô µÈ °ÍÀº ¾ËƼÇ÷¡³ë °í¿øÀÌ ¼ö¹é ¸¸³â µ¿¾È ±Þ°ÝÇÑ Ç¥¸é À¶±â ÆÞ½º¿¡ ÀÇÇØ Çü¼ºµÈ ÈÄ, °íµµ°¡ ¾ÈÁ¤µÈ Àå±â°£(¼öõ¸¸³â)¿¡ ºÐ¸®µÆ´Ù´Â Á¡¡±À̶ó°í ¹àÈ÷¸é¼­ ¡°ÀÌ ÇÁ·Î¼¼½º°¡ ´Ù¸¥ ³ôÀº »ê¸Æ¿¡¼­µµ Ç¥º»ÀÌ µÉ °ÍÀ̶ó°í ÀǽÉÇÏÁö¸¸ È®½ÅÀ» À§Çؼ­´Â ´õ ¸¹Àº ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù¡±°í ÀüÇß´Ù.
 
[Ãâó : KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 4¿ù 28ÀÏ]

[¿ø¹®º¸±â]

Microgel-based thermoresponsive membranes for water filtration

Filtration using membrane filters is one of the most commonly used separation techniques. Modern developments are aimed at membranes with tailored separation properties as well as switchability. German scientists have now developed a very simple method for the modification of membranes through the inclusion of microgels. In the journal Angewandte Chemie

The researchers from RWTH Aachen University and DWI—Leibniz Institute for Interactive Materials used commercially available hollow-fiber membranes used for the ultra- and microfiltration of water. Hollow-fiber filters consist of bundles of fibers made of a semipermeable material with a channel on the inside.
 
 The walls of the fibers act as the membrane. In order to modify the membranes, a team led by Matthias Wessling simply filtered microgel suspensions through them. This allowed the microgels to become embedded into the porous structure of the membrane.
 
A gel is a three-dimensional molecular network that is filled with a liquid. Unlike the liquid in a sponge, the liquid in the gel is tightly bound. Microparticles of a gel are called microgels. The researchers used microgels made of polyvinylcaprolactam that are stable to about 32¡ÆC. Above this temperature, the gel structure collapses, letting the water out.
 
The hollow-fiber membranes used have an asymmetric pore structure with internal diameters of 30 nm (ultrafiltration) to 200 nm (microfiltration) and external diameters of several micrometers. The fibers can be loaded with the microgels either from the outside in or from the inside out. In the first method the gel particles penetrate partway into the pores and the outside is then coated with microgel.
 
In the second method, gel particles are only found on the interior of the pores, but not in those pores that are very narrow. In both types of fibers, the microgel is so firmly adsorbed that it cannot be washed away either during filtration or back flushing. The permeability of both types is significantly reduced relative to the untreated membrane, because the microgel makes the pores less accessible.
 
Raising the temperature causes the microgel to shrink, increasing the permeability of the membrane; cooling reverses the effect. This switching mechanism could be an important method for an efficient cleaning of the hollow fiber when high flow rates are needed during a backwashing step at low temperatures.
 
 ¡°The modification of conventional hollow-fiber membranes with stimuli-responsive microgels provides a straightforward and versatile route to design functional membranes with new, tailored properties that allow for regulation of the permeability,¡± says Wessling.
 
 ¡°Varying the chemical structures of the microgels allows for the introduction of specific functionalities into membranes, increasing the efficiency and selectivity of separation processes in water treatment and medical technology. We will further develop this versatile platform by fundamental research within the SFB Functional Microgels and Microgel Systems of the German Research Foundation (DFG).¡±
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] American Water, Àü¼¼°èÀûÀΠƯÇã±Ç Çù¾à ¼­¸í
´ÙÀ½±Û [µ¶ÀÏ] ¹° Á¤È­¸¦ À§ÇÑ ¸¶ÀÌÅ©·ÎÁ© ±â¹ÝÀÇ ¿­¹ÝÀÀ ¸âºê·¹ÀÎ °³¹ß
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.