Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[ºÏ¾Æ¸Þ¸®Ä«] [2014] [¹Ì±¹] ¹ÙÀÌ¿À±â¹Ý °øÁßÇÕü¸¦ Á¦Á¶ÇÏ´Â ¹æ¹ý
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2014-06-03 Á¶È¸¼ö 712
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ¹ÙÀÌ¿À±â¹Ý °øÁßÇÕü¸¦ Á¦Á¶ÇÏ´Â ¹æ¹ý

¹Ì³×¼ÒŸ ´ëÇÐÀÇ ¿¬±¸ÆÀÀº ¹ÙÀÌ¿ÀÇÕ¼º Àü¹®±â¼úÀ» °íºÐÀÚ ÇÕ¼º ¹× ¿£Áö´Ï¾î¸µ ±â¼ú°ú °áÇÕÇÏ¿© ´Ù¾çÇÑ Æ¯¼ºÀ» °¡Áö¸ç ´Ù¾çÇÑ ºÐ¾ß¿¡ ÀÀ¿ëÇÒ ¼ö ÀÖ´Â, ÀüÀûÀ¸·Î ¼³ÅÁ¿¡¼­ À¯·¡ÇÑ ºôµùºí·ÏÀ¸·Î ¸¸µé¾îÁø °øÁßÇÕü¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ±â¹ÝÀ» È®º¸ÇÏ¿´´Ù. »õ·Î °³¹ßµÈ Àç·áµéÀº °æÁ¦¼º°ú ¼º´É ¸é¿¡¼­ ¼®À¯ ±â¹Ý Æú¸®¿¡½ºÅÍ Åº¼ºÃ¼ ¹× ´Ü´ÜÇÑ Çöó½ºÆ½°ú °ßÁÙ ¼ö ÀÖ´Â ÀáÀ缺À» °¡Áø, ÃÖÃÊÀÇ ¹ÙÀÌ¿À ±â¹Ý ºí·Ï °øÁßÇÕüÀÌ´Ù. ÀÌ ±â¼úÀº È­°ø Àç·á°øÇаú ±³¼ö Kechun Zhang°ú ¹Ú»çÈÄ °úÁ¤ÀÇ Mingyong XiongÀÌ À°°¢Çü °í¸® ¥â-methyl-¥ä-valerolactone (MVL)À» »õ·Î¿î ¹ÙÀÌ¿À ±â¹Ý ´Ü·®Ã¼·Î ¸¸µå´Â ¹ÙÀÌ¿ÀÇÕ¼º ¹æ¹ýÀ» óÀ½À¸·Î µðÀÚÀÎÇÑ °á°ú¿¡ µû¸¥ °ÍÀÌ´Ù. È­Çаú ±³¼ö Marc A. Hillmyer¿Í ´ëÇпø»ý K. SchneidermanÀº È­°ø Àç·á°øÇаú ±³¼ö Frank S. Bates¿Í Çù·ÂÇÏ¿© »ýºÐÇØ °íºÐÀÚ ºôµùºí·°À¸·Î ÀÌ¹Ì »ç¿ëµÇ°í ÀÖ´Â ¹ÙÀÌ¿À ±â¹Ý ¿øÇü ´ÙÀÌ¿¡½ºÅ׸£(diester)ÀÎ ¶ôŸÀ̵å¿Í MVLÀÇ °øÁßÇÕ °úÁ¤À» Á¶ÀýÇÏ´Â ½ÇÇèÀ» ¼öÇàÇÏ¿´´Ù. 

¡°ÀÌµé ºí·Ï °øÁßÇÕüÀÇ »ý»êÀÇ ¼®À¯¿¡¼­ À¯·¡µÈ ¿£Áö´Ï¾î¸µ Çöó½ºÆ½°ú °æÀïÇÒ ¼ö ÀÖ´Â Á¶ÀýÇÒ ¼ö Àִ Ư¼ºÀ» °¡Áø Áö¼Ó°¡´ÉÇÑ Àç·áÀÇ °³¹ßÀ» À§ÇØ ÇÊ¿äÇÑ ¸î °¡Áö Áß¿äÇÑ Á¡À» ÀÌ·ç¾î¾ß ÇÏ´Â Æ÷°ýÀûÀÎ °í·Á»çÇ×ÀÌ ÇÊ¿äÇÏ´Ù¡±°í Texas A&M °íºÐÀÚÈ­ÇÐÀÚÀÎ Karen L. Wooley´Â ¸»ÇÑ´Ù. ÇöÀç±îÁö °¡Àå ¼º°øÀûÀÎ ¹ÙÀÌ¿À ±â¹Ý ÇÕ¼º°íºÐÀÚ´Â Æú¸®¶ôƽ»ê(poly(lactide: PLA)À¸·Î »ýºÐÇØµÉ ¼ö ÀÖ´Â À½·á¼ö ÄÅ°ú ÀÇÇÐ Àåºñ¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ ºÐ¾ß¿¡ »ç¿ëµÇ°í ÀÖ´Â ´Ü´ÜÇÑ Áö¹æÁ· Æú¸®¿¡½ºÅÍÀÌ´Ù. ±×·¯³ª Æú¸®¶ôƽ»ê°ú ´Ù¸¥ »ó¾÷ÀûÀÎ ¹ÙÀÌ¿À±â¹Ý Æú¸®¿¡½ºÅ͵éÀº Àß ºÎ¼­Áö´Â Ư¼ºÀ» °¡Áö°í ÀÖ´Ù. ¥â-methyl-¥ä-valerolactone-¶ôƽ»ê °øÁßÇÕü´Â ²÷¾îÁöÁö ¾Ê°í ¿ø·¡ ±æÀÌÀÇ 18¹è ÀÌ»óÀ¸·Î ¹Ýº¹ÇÏ¿© ´Ã¾î³¯ ¼ö ÀÖ´Ù. 

°íºÐÀÚ È­ÇÐÀÚµéÀº ¿ì¼öÇÑ Æ¯¼ºÀ» °¡Áö´Â Æú¸®¶ôƽ»ê ºí·Ï °øÁßÇÕü¸¦ ¸¸µé±â À§ÇØ ³ë·ÂÇÏ¿´´Ù°í Hillmyer´Â ¼³¸íÇÑ´Ù. ±×·¯³ª °øÁßÇÕü´Â ¼®À¯ ȤÀº ¸Å¿ì ºñ½Ñ Àç»ýÀå¿øÀ¸·ÎºÎÅÍ À¯·¡µÈ´Ù. 5°¢ÇüÀÇ ¥ã–valerolactone°ú °°Àº Àû´çÇÑ °¡°ÝÀÇ ¹ÙÀÌ¿À±â¹Ý È­ÇÕ¹°Àº ½±°í ÁßÇÕµÇÁö ¾Ê´Â´Ù. ¹Ì³×¼ÒŸ ¿¬±¸ÆÀÀº ¶ôƽ»ê°ú °°Àº Ư¼ºÀ» °¡Áö´Â MVLÀ» °³¹ßÇϱâ À§ÇÑ ¿¬±¸¸¦ ¼öÇàÇÏ¿´´Ù. MVLÀ» ÇÕ¼ºÇϱâ À§Çؼ­ ¿¬±¸¿øµéÀº ÅÍÆä³ëÀ̵å(terpenoids) ¹× Ç׸»¶ó¸®¾ÆÁ¦ ¾Æ¸£Å׹̽ôÑ(artemisinin)À» ¸¸µå´Â ¹æ¹ý¿¡¼­ Áß°£Ã¼ÀÎ ¸Þ¹ß·Ð »ê¿°(mevalonate)À» ÇÕ¼ºÇϱâ À§ÇØ À̽ºÆ®¿Í ¹ÚÅ׸®¾Æ ³»¿¡ ÀÌÀü¿¡ ¿£Áö´Ï¾îµåÇÑ ´ë»ç°æ·Î¸¦ ¸¸µé¾ú´Ù. ¿¬±¸¿øµéÀº ±Û·çÄÚ½º·ÎºÎÅÍ MVLÀ» ÁغñÇϱâ À§ÇØ À̸¦ È®ÀåÇÏ´Â °øÁ¤¿¡ ±Õ·ù È¿¼Ò¸¦ °úÁ¤¿¡ ÷°¡ÇÏ¿´´Ù. ÀÌ´Â MVLÀÌ Å³·Î±×·¥´ç 2ºÒ·Î °æÁ¦¼ºÀ» °¡Áö°í »ó¾÷ÀûÀ¸·Î »ý»êµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù°í Hillmyer´Â ¸»ÇÑ´Ù. 

MVLÀº ÀÚüÀûÀ¸·Î´Â ¹«Á¤ÇüÀÇ °í¹«¿Í °°Àº Ư¼ºÀ» °¡Áø °íºÐÀÚÀÌ´Ù. ±×·¯³ª ÁßÇÕ°úÁ¤¿¡¼­ ¶ôŸÀ̵带 ÷°¡ÇÏ¸é º¸´Ù ´Ü´ÜÇÏ°í °áÁ¤¼ºÀ» °¡Áø °íºÐÀÚ°¡ ¸¸µé¾îÁø´Ù. ¹Ì³×¼ÒŸ ¿¬±¸ÆÀÀº µÎ °³ÀÇ °íºÐÀÚ ºí·ÏÀÇ ºñÀ²À» Á¶ÀýÇÏ´Â °Í¿¡ ÀÇÇØ ·±´× ½Å¹ß¿¡ »ç¿ëµÉ ¼ö ÀÖ´Â ºÎµå·´°í ´Ã¾î³¯ ¼ö Àִ ź¼ºÃ¼¿¡¼­ ÀÚµ¿Â÷¸¦ ¸¸µå´Âµ¥ »ç¿ëµÉ ¼ö ÀÖ´Â ¿­°¡¼Ò¼ºÀÇ ´Ü´ÜÇÏ°í °­ÇÑ Æ¯¼ºÀ» °¡Áø °íºÐÀÚ¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ¾ú´Ù. ¡°Áö¼Ó°¡´ÉÇÑ °íºÐÀÚ°¡ ȯ°æģȭÀûÀÎ ¹æ¹ýÀ¸·Î ¸¸µé¾îÁö°í ȯ°æģȭÀûÀÎ ¹æ¹ýÀ¸·Î ó¸®µÉ ¼ö ÀÖÀ»Áö¿¡ ´ëÇÑ µÎ °³ÀÇ ¿ì·Á¿Í ÇÔ²² ¸¹Àº Á¢±Ù¹ýÀÌ ÈǸ¢ÇÏ°Ô Àû¿ëµÇ¾ú´Ù. ±×·¯³ª ´ëºÎºÐÀÇ °æ¿ì´Â °¡Àå Áß¿äÇÑ °íºÐÀÚ Æ¯¼º-°¡°ÝÀÇ ¸é¿¡¼­ ÁÖµÈ ´ÜÁ¡À» °¡Áö°Ô µÈ´Ù. ÀÌ »õ·Î¿î Á¢±Ù¹æ¹ýÀº °æÁ¦ÀûÀ¸·Î ½ÇÇö°¡´ÂÇÑ Æ¯¼ºÀ» Á¦°øÇØÁÙ »Ó¸¸ ¾Æ´Ï¶ó Çöó½ºÆ½ »ê¾÷¿¡¼­ ÀÌ¹Ì Ã£°í Àִ Ư¼ºÀ» °¡Áø ģȯ°æ °øÁßÇÕü¸¦ »õ·Ó°Ô Á¦½ÃÇØÁÙ ¼ö ÀÖ´Ù¡±°í °íºÐÀÚÈ­ÇÐÀÚÀÎ Ç÷θ®´Ù ´ëÇÐ ±³¼ö Stephen A. Miller´Â ¸»ÇÑ´Ù. 

[Ãâó : KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 6¿ù 3ÀÏ]

[¿ø¹®º¸±â]

How To Build A Biobased Copolymer

By combining biosynthesis expertise with polymer synthesis and engineering skills, a University of Minnesota research team has laid the groundwork for producing copolymers that have a wide range of properties and applications and are made entirely from sugar-derived building blocks. The new materials are the first biobased block copolymers with the potential to go stride-for-stride in cost and performance with petroleum-based polyester elastomers and hard plastics.

The development hinged on chemical engineering and materials science professor Kechun Zhang and postdoctoral associate Mingyong Xiong first designing a biosynthetic route to make the six-membered ring ¥â-methyl-¥ä-valerolactone (MVL) as a new biobased monomer. Chemistry professor Marc A. Hillmyer and graduate student Deborah K. Schneiderman, in collaboration with chemical engineering and materials science professor Frank S. Bates, then controllably copolymerized MVL with lactide, a biobased cyclic diester already used as a biodegradable polymer building block (Proc. Natl. Acad. Sci. USA 2014, DOI: 10.1073/pnas.1404596111).

¡°The production of these block copolymers is a comprehensive feat that has accomplished several important aspects needed for the development of sustainable materials with tunable properties that are capable of competing with petroleum-derived engineering plastics,¡± comments Texas A&M polymer chemist Karen L. Wooley.

The most successful biobased synthetic polymer to date is poly(lactide), or PLA, a rigid aliphatic polyester used in applications including compostable drinking cups and in medical devices. However, the brittle nature of PLA and other commercial biobased polyesters has thwarted their broad use.

Polymer chemists have been trying to make PLA block copolymers with improved properties, Hillmyer explains, but the copolymer blocks are derived from petroleum or from prohibitively expensive renewable sources. And affordable biobased compounds such as the five-membered ring ¥ã–valerolactone aren¡¯t amenable to easy polymerization. The Minnesota team went to the drawing board and designed MVL to have just the right properties to work with lactide.

To synthesize MVL, the researchers built on a metabolic pathway previously engineered into yeast and bacteria for synthesizing mevalonate, an intermediate on the way to making terpenoids and the antimalarial drug artemisinin. They added fungal enzymes to the pathway to expand it to prepare MVL directly from glucose. The yields suggest MVL can be commercially produced for $2.00 per kg—a number that gives it economic traction, Hillmyer says.

MVL forms an amorphous, rubbery polymer on its own. But adding lactide to the polymerization in progress leads to a more rigid, crystalline polymer. By controlling the ratio of the two polymer blocks, the Minnesota team can tune the mechanical properties from those of soft, stretchable elastomers that could be used in the soles of running shoes to the stiff and tough properties of thermoplastics appropriate for building automobiles.

¡°Many approaches have laudably addressed the two main concerns that sustainable polymers have a green birth and a green death, but the vast majority fall short with respect to the most important polymeric property—cost,¡± observes polymer chemist Stephen A. Miller of the University of Florida. ¡°This new approach not only achieves the economic viability threshold but also delivers a novel class of green copolymers with properties already sought by the plastics industry.¡±

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] »õ·Î¿î ·¹ÀÌÀú °¨Áö ±â¼ú
´ÙÀ½±Û [¹Ì±¹] ¿Â½Ç°¡½º ¹èÃâ Àú°¨ ¡®Ãѷ¡¯
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.