Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[À¯·´] [2014] [³×´ú¶õµå] ¹°¹æ¿ïÀ» ÀÌ¿ëÇÑ ½Ç¸®ÄÜ Á¢±â
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2014-06-10 Á¶È¸¼ö 477
ÆÄÀÏ÷ºÎ
[³×´ú¶õµå] ¹°¹æ¿ïÀ» ÀÌ¿ëÇÑ ½Ç¸®ÄÜ Á¢±â

³×´ú¶õµå Æ®À¢Å× ´ëÇÐ(University of Twente)ÀÇ ¿¬±¸ÁøÀÌ ¹Ì½Ã ±Ô¸ðÀÇ Á¤È®ÇÑ Á¾ÀÌÁ¢±â ±â¼úÀ» ¼±º¸¿´´Ù. ¿ÀÁ÷ ¹°¹æ¿ï¸¸À» »ç¿ëÇÏ¿©, °úÇÐÀÚµéÀº ÆòÆòÇÑ ½Ç¸®ÄÜ ÁúÈ­¹° ÆÇÀ» Á¤À°¸éü³ª ÇǶó¹Ìµå, Ã౸°øÀ» Àý¹ÝÀ¸·Î ÀÚ¸¥ ¸ð¾ç, ±×¸®°í Åäºí·Ð(Toblerone) ÃÊÄݸ´ ¹Ù¿Í ºñ½ÁÇÑ ±ä Á÷»ç°¢Çü ±¸Á¶ µîÀ¸·Î ¸¸µå´Â ¹¦±â¸¦ º¸¿©ÁÖ¾ú´Ù. ±âÇÏÇÐÀû °³Ã¼°¡ ¿©·¯ °¡Áö·Î µÚ¼¯ÀÎ ÀÌ ±¸Á¶´Â À°¾ÈÀ¸·Î´Â º¼ ¼ö ¾øÀ» Á¤µµ·Î ¸Å¿ì ÀÛ´Ù. ¡°3D ±¸Á¶¸¦ ¸¸µå´Â °ÍÀº ÀÏ»ó»ýÈ°¿¡¼­´Â ¸Å¿ì ÀÚ¿¬½º·¯¿î ÀÏÀÌÁö¸¸, ¹Ì¼¼Á¦Á¶¿¡¼­´Â ±Øµµ·Î ¾î·Á¿î ÀÏÀÌ´Ù. ƯÈ÷, ´ç½ÅÀÌ ¸¹Àº ¼öÀÇ ±¸Á¶¹°À» Àú·ÅÇÏ°Ô ±¸ÃàÇÏ°íÀÚ ÇÒ ¶§´Â ´õ´õ¿í ±×·¸´Ù¡±°í Æ®À¢Å× ´ëÇÐÀÇ ³ª³ë±â¼ú MESA+ ¿¬±¸¼ÒÀÇ ¿¬±¸¿øÀÎ Antoine LegrainÀÌ ¸»Çß´Ù. ÀÌ·¯ÇÑ ¼ÒÇü ±¸Á¶¹°À» ±¸ÃàÇϱâ À§ÇÏ¿©, ¿¬±¸ÁøÀº Àڱ⳪ Ç¥¸é Àå·Â°ú °°Àº ÀÚ¿¬Àû ÈûÀ¸·Î ¸ð¾çÀ» º¯È­½ÃÅ°´Â ÀÚ°¡ Á¶¸³(self-assembly) ±â¼úÀ» äÅÃÇÏ¿´´Ù. 

1990³â´ëÀÇ ÀÚ°¡ Á¶¸³ ±â¼úÀº ÁÙ¾îµç ÀüÀÚ Àåºñ¿¡ Á» ´õ ¸¹Àº ¿¬»ê·ÂÀ» ²Ù°Ü ³Ö±â À§ÇÑ ¼ö´ÜÀ̱⵵ ÇÏ¿´´Ù. ¼ÒÀ§ ¼Ö´õ ¾î¼Àºí¸®(solder assembly)´Â ³ìÀÎ ¶«³³ÀÇ Ç¥¸é Àå·ÂÀ» ÀÌ¿ëÇÏ¿© ÀüÀÚ »ê¾÷ÀÇ Ç¥ÁØ ¹ÝµµÃ¼ ¹°ÁúÀÎ ½Ç¸®ÄÜÀ» 3D ¸ð¾çÀ¸·Î Á¢¾î¼­, ÀüÀÚ ºÎÇ°À¸·Î µé¾î Âù ÀÛÀº °ø°£À» È¿À²ÀûÀ¸·Î ¸Þ²Ù¾ú´Ù. Æ®À¢Å× ´ëÇÐÀÇ ¿¬±¸Áø ¶ÇÇÑ ½Ç¸®ÄÜ ±â¹ÝÀÇ ¸ð¾çÀ» ¸¸µé¾úÁö¸¸, ±×µéÀº Á» ´õ ÈçÇÑ ¾×ü(¹°)¸¦ »ç¿ëÇÏ¿©, Á¢±â¸¦ Á¦¾îÇÏ°í È°¼ºÈ­ÇÏ¿´´Ù. 

À̵éÀÇ ¹° ±â¹Ý Á¢±â ¹æ½ÄÀº Applied Physics¿¡ ¹ßÇ¥µÇ¾ú´Ù. ¡°¹°Àº °÷°÷¿¡ ÀÖÀ¸¸ç, »ýü ÀûÇÕÇÏ°í, Àú·ÅÇϸç, Àû¿ëÇϱⰡ ¸Å¿ì ½±´Ù¡±°í LegrainÀÌ ¸»Çß´Ù. ¶«³³ ´ë½Å¿¡ ¹°À» »ç¿ëÇÏ´Â °ÍÀº °¢°¢ÀÇ °³º° ±¸Á¶¸¦ Á¢´Â ¼Óµµ¸¦ ³ôÀÏ ¼ö ÀÖ´Ù. ¸¸¾à ÀÌ·¯ÇÑ ¹° ±â¹Ý °úÁ¤ÀÌ ÃßÈÄ ¿¬±¸¸¦ ÅëÇؼ­, ÇÑ ¹ø¿¡ ¿©·¯ ±¸Á¶¸¦ Á¢´Â ±â¼úÀ» ¼ºÃëÇÑ´Ù¸é, ÀÌ´Â ÇöÀçÀÇ ÀÚ±â Á¢Èù ¹æ½ÄÀ» ´õ¿í Àú·ÅÇÏ°Ô ÇÒ °ÍÀÌ´Ù. 

±×µé¸¸ÀÇ 3D µ¿¹°¿øÀ» ¸¸µé±â À§ÇÏ¿©, ¿¬±¸ÁøÀº ¸ÕÀú Æò¸é ½ÃÀÛ ÆÐÅÏÀ» ¼³°èÇϱâ À§ÇÑ ÁÖ¹®Çü ¼ÒÇÁÆ®¿þ¾î ÇÁ·Î±×·¥À» »ç¿ëÇß´Ù. ±×¸®°í¼­, ±×µéÀº ½Ç¸®ÄÜ ¿þÀÌÆÛ¿¡ ±× µµ¾ÈÀ» ¡°Àμ⡱ÇÏ¿´´Ù. ¿©´ÝÀ̸¦ ¸¸µé±â À§ÇÏ¿©, ¿¬±¸ÁøÀº ¹Ú¸·¿¡ ±×°ÍÀ» ÁõÂøÇϱâ Àü¿¡, ¹°Áú¿¡ ¿ì¼± ½Ä°¢Çß´Ù. ¡°°¡´ÉÇÑ ÇüÅ´ ¿øÄ¢ÀûÀ¸·Î ¹«ÇÑÇÏ´Ù. ±×°ÍµéÀ» ¸ÕÀú Æò¸é¿¡ ¼³°èÇÏ´Â °ÍÀÌ ¿ì¼± °úÁ¦¡±¶ó°í LegrainÀÌ ¸»Çß´Ù. ±× ¼³°è¸¦ Á¢±â À§ÇÏ¿©, ¿¬±¸ÁøÀº ½Ç¸®ÄÜ ¿þÀÌÆÛ¿¡ ³²°ÜµÐ ä³ÎÀ» ÅëÇؼ­ ¾à°£ÀÇ ¹°À» Æۿ÷ȴÙ. ¹° ºÐÀÚ¿¡ ÀÇÇÑ ¸ð¼¼°ü·Â(capillary forces)Àº °¢ÀÚ¿Í ½Ç¸®ÄÜÀ» ºÙ°Ô ÇÏ¿©¼­, ¿ÏÀüÇÑ 3D ÀÛÇ°À» Çü¼ºÇϱâ À§ÇÏ¿© ÆòÆòÇÑ Ç¥¸éÀ» ¹Ð¾î³½´Ù. ¿¬±¸ÁøÀº ¸ð·¡ ÀÔÀÚ Å©±âÀÇ ÃÖÁ¾ ±¸Á¶°¡ ±×°ÍÀÌ Á¥¾î ÀÖ´Â ÇÑÀº ¾î¶°ÇÑ ¸¶¸ðÀÇ ÈçÀû ¾øÀ̵µ 60¹ø±îÁö ¿­¸®°í ´ÝÈú ¼ö ÀÖ´Ù°í ¹àÇû´Ù. 

±¸Á¶°¡ Á¢È÷°í, ´Ù½Ã ¿­¸®´Â ´É·ÂÀº »ý¹° ÀÇÇÐÀû ÀÀ¿ë¿¡ ¸Å¿ì À¯¿ëÇÏ´Ù. ¿¹¸¦ µé¾î, ÀÚ±â-Á¢Èû µµ±¸´Â ¾à¹°À» ½Åü°¡ ÇÊ¿äÇÑ Á¤È®ÇÑ À§Ä¡¿¡ Àü´ÞÇϰųª, ¶Ç´Â ¸¶ÀÌÅ©·Î »ýü °Ë»ç µµ±¸¸¦ À§ÇÑ ¾à°£ÀÇ Á¶Á÷À» Àâ´Â ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Ù. ¹°¹æ¿ïÀ» ÀÌ¿ëÇÏ¿© ½Ç¸®ÄÜÀ» Á¢´Â ±â¼úÀ» ¼±º¸ÀÎ °ÍÀÌ À̹øÀÌ Ã³À½Àº ¾Æ´ÏÁö¸¸, Æò¸é ¼³°è¹°ÀÇ ¹Ø¿¡ À§Ä¡ÇÑ Ã¤³ÎÀ» ÅëÇؼ­ ¹°À» Æۿø²À¸·Î½á, ¹°¹æ¿ïÀÇ Å©±â¸¦ Á¤È®ÇÏ°Ô Á¦¾îÇÏ´Â ¹æ¹ýÀ» °í¾ÈÇÑ °ÍÀº ±×µéÀÌ Ã³À½ÀÌ´Ù. 

¼ÕÀ¸·Î Á÷Á¢ ¹°¹æ¿ïÀ» ¹èÄ¡ÇÏ´Â ÀÌÀüÀÇ ¿¬±¸µéÀº ±×°ÍÀ» Á¦¾îÇϱⰡ Èûµé¾î¼­, ¿ÀÁ÷ ÇÑ ¹ø ¹Û¿¡ Á¢À» ¼ö°¡ ¾ø¾ú´Ù. Çö¹Ì°æÀ» ÅëÇØ, ±×µéÀÇ ´«¾Õ¿¡ ÆîÃÄÁø ´Ùä·Î¿î ±¸Á¶¹°µéÀº º»´Ù´Â °ÍÀº Á¤¸»·Î Èï¹Ì·Î¿î °æÇèÀ̶ó°í LegrainÀÌ ¸»Çß´Ù. ¡°¿¬±¸ ¼öÁØ¿¡¼­ÀÇ Ã»Á¤½Ç Á¦Á¶´Â ±æ°í, ±î´Ù·Î¿ì¸ç, º¹ÀâÇÑ °úÁ¤ÀÌ´Ù. ÇÏÁö¸¸ ±×°ÍÀ» ÅëÇØ ÀÌ·¸°Ô ÁÁÀº °á°ú¸¦ ¾òÀ» ¼ö À־ ¸Å¿ì ±â»Ú´Ù¡±°í LegrainÀÌ ¸»Çß´Ù. 

Ã౸°ø°ú ±ä »ç°¢Çü ¸ð¾çÀ» ¸¸µêÀ¸·Î½á, ±×µéÀÇ ½Ã½ºÅÛÀ» ½ÃÇèÇÏ°í, ±×°ÍÀÌ °®Ãá ´É·ÂÀ» ÀÌÇØÇÏ´Â °ÍÀº Èï¹Ì·Î¿î ÀÏÀÌ´Ù. ¾ÕÀ¸·Î, ¿¬±¸ÁøÀº ÀÌ ±â¼úÀ» ÀÌ¿ëÇÏ¿©, Àüµµ¼º ¿©´ÝÀÌ¿Í 3D ¼¾¼­¸¦ ¸¸µå´Â ¿¬±¸¸¦ ¼öÇàÇÒ °ÍÀÌ´Ù. 

[Ãâó : KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2014³â 6¿ù 10ÀÏ]

[¿ø¹®º¸±â]

Just add water: 3-D silicon shapes fold themselves when wetted by microscopic droplets

Researchers from the University of Twente in the Netherlands have taken the precise art of origami down to the microscopic scale. Using only a drop of water, the scientists have folded flat sheets of silicon nitride into cubes, pyramids, half soccer-ball-shaped bowls and long triangular structures that resemble Toblerone chocolate bars – an omnium-gatherum of geometric objects, which are almost too tiny to see with the naked eye.

"While making 3-D structures is natural in everyday life, it has always been extremely difficult to do so in microfabrication, especially if you want to build a large number of structures cheaply," said Antoine Legrain, a graduate student at the MESA+ Institute for Nanotechnology at the University of Twente. To help solve the challenge of building in miniature, researchers have turned to the technique of self-assembly, in which natural forces such as magnetism or surface tension trigger a shape change.

In the 1990s self-assembly became a way to help cram even more computing power into shrinking electronic devices. So-called solder assembly used the surface tension of melting solder to fold silicon, the electronic industry's standard semiconductor material, into 3-D shapes that more efficiently filled a small space with electrical components.

The University of Twente team also created silicon-based shapes, but they used a more ubiquitous liquid – water – to activate and control the folding. They describe their water-based folding system in a paper in the Journal of Applied Physics, from AIP Publishing.

"Water is everywhere, is biocompatible, cheap, and easy to apply," said Legrain. Using water instead of solder also speeds up the folding of each individual structure. If the water-based process is further developed to fold multiple structures at once, it could become cheaper than current self-folding approaches, said Legrain.

To create their menagerie of 3-D shapes, the researchers used a custom software program to first design the flat starting pattern. They then "printed" the design onto silicon wafers. To create hinges, the researchers etched away material just before depositing a thinner layer.

"Possible shapes are in principle limitless," said Legrain, "as long as they can first be made on a flat surface."
The ability to unfold and refold the structures could be useful in biomedical applications. For example, self-folding tools could deliver drugs exactly where they are needed in the body or grab a tiny amount of tissue for a micro-biopsy.

This is not the first time the researchers demonstrated the ability to fold silicon with water droplets, but it is the first time they devised a precise way to control the size of the droplets by pumping water through a channel located beneath the flat design. Previous efforts, which involved placing the water droplets by hand, were hard to control and resulted in structures that could only be folded once.

Watching through a microscope as the new system folded and unfolded shapes in front of his eyes was an exciting experience, said Legrain. "Cleanroom fabrication at research level can be long, tricky and frustrating. It is a good feeling when we obtain such nice results out of it," he said.

For now, creating the soccer ball and Toblerone shapes are fun ways for the researchers to test their system and understand its capabilities. Going forward, the team is working toward making conductive hinges and creating 3-D sensors with their new technique.

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [½ºÆäÀÎ] Abengoa, ¸ð¸£ÄÚ¿¡ SWRO Ç÷£Æ® °Ç¼³
´ÙÀ½±Û [¹Ì±¹] GE, WIBAX¸¦ ¹° ±â¼ú ¹è±Þȸ»ç·Î ÁöÁ¤
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.