Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[¾Æ½Ã¾Æ] [2015] [ÀϺ»] ÈÄÄí½Ã¸¶ Áö¿ªÀÇ ¹Ì»ý¹° Åä¾ç Á¤È­
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-03-16 Á¶È¸¼ö 502
ÆÄÀÏ÷ºÎ
[ÀϺ»] ÈÄÄí½Ã¸¶ Áö¿ªÀÇ ¹Ì»ý¹° Åä¾ç Á¤È­
 
È£¿°¼º ¹Ì»ý¹°ÀÇ ´Ü¹éÁúÀÌ, ÀϺ» ÈÄÄí½Ã¸¶ ´ÙÀÌÀÌÄ¡ ÇÙ¹ßÀü¼Ò »ç°í¸¦ ÅëÇØ À¯ÃâµÈ ¹æ»ç¼º ½ºÆ®·ÐƬ(Sr) ¹× ¼¼½·(Cs) ÀÌ¿ÂÀÇ Á¤È­¿¡ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀδÙ. X¼± ±¸Á¶ ºÐ¼®À» ÅëÇØ, È£¿°¼º ¹Ì»ý¹°ÀÎ Chromohalobacter sp. 560ÀÇ º£Å¸-¶ôŸ¸¶¾ÆÁ¦(beta-lactamase) È¿¼Ò¿¡ ¼¼½· ¼±ÅÃÀûÀÎ °áÇÕ ºÎÀ§°¡ Á¸ÀçÇÏ´Â °ÍÀÌ È®ÀεǾú´Ù.

È£¿°¼º ¹Ì»ý¹°ÀÇ ´Ü¹éÁúÀÌ, ÀϺ» ÈÄÄí½Ã¸¶ ´ÙÀÌÀÌÄ¡ ÇÙ¹ßÀü¼Ò »ç°í¸¦ ÅëÇØ À¯ÃâµÈ ¹æ»ç¼º ½ºÆ®·ÐƬ(Sr) ¹× ¼¼½·(Cs) ÀÌ¿ÂÀÇ Á¤È­¿¡ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀδÙ. X¼± ±¸Á¶ ºÐ¼®À» ÅëÇØ, È£¿°¼º ¹Ì»ý¹°ÀÎ Chromohalobacter sp. 560ÀÇ º£Å¸-¶ôŸ¸¶¾ÆÁ¦(beta-lactamase) È¿¼Ò¿¡ ¼¼½· ¼±ÅÃÀûÀÎ °áÇÕ ºÎÀ§°¡ Á¸ÀçÇÏ´Â °ÍÀÌ È®ÀεǾú´Ù. ÀϺ» ¿øÀڷ¿¡³ÊÁö ¿¬±¸¼Ò, °¡°í½Ã¸¶´ëÇб³¿Í ¹Ì±¹ Ç÷θ®´ÙÁÖ¸³´ëÇб³ °øµ¿ ¿¬±¸ÁøÀº 1.8~2.9 ¿Ë½ºÆ®·Ò ÇØ»óµµ Á¶Á÷À» ÀÌ¿ëÇÏ¿© È¿¼Ò¸¦ ºÐ¼®ÇÏ¿´´Ù. ¶ÇÇÑ º¯Ä¢ÀûÀÎ X-¼± ȸÀýÀ» ÅëÇØ ½ºÆ®·ÐƬ°ú ¼¼½· À̿¿¡ ´ëÇÑ ´Ü¹éÁú »óÀÇ °áÇÕ ºÎÀ§¸¦ ¹àÇô³»´Âµ¥ ¼º°øÇÏ¿´´Ù.

¿¬±¸ÁøÀº, ÀϹÝÀûÀ¸·Î ´Ù¸¥ °áÇÕºÎÀ§º¸´Ù ¿ì¼öÇÑ ¼º´ÉÀ» º¸ÀÌ´Â 9°ã ³ªÆ®·ý ÀÌ¿ÂÀÇ ºÐÀÚÀû °úÀ× Á¸Àç »ó¿¡¼­µµ, ´Ü¹éÁú »ó ƯÁ¤ ºÎÀ§¿¡¼­ ¼¼½· ÀÌ¿ÂÀÌ ¼±ÅÃÀûÀ¸·Î À§Ä¡ÇÒ ¼ö ÀÖ´Â ÀÌÀ¯¸¦ ¾Ë¾Æ³»°íÀÚ ÇÏ¿´´Ù. Èï¹Ì·Ó°Ôµµ, ½ºÆ®·ÐƬ°ú ¼¼½· ÀÌ¿ÂÀÇ Á¸Àç°¡ È¿¼ÒÀÇ È°¼º °¨¼Ò¸¦ À¯¹ßÇÏÁö´Â ¾Ê´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. È¿¼Ò È°¼ºÀº µî¿Â ÀûÁ¤ ¿­·®ÃøÁ¤¹ý(isothermal titration calorimetry)À» ÅëÇØ °áÁ¤µÉ ¼ö ÀÖ´Ù. ¿¬±¸ÁøÀº ¡°¼±ÅÃÀûÀÌ°í ¸Å¿ì ģȭÀûÀÎ ¼¼½· °áÇÕ À§Ä¡ÀÇ ¹ß°ßÀº, ÀΰøÀûÀÎ ¼¼½· °áÇÕ À§Ä¡ ¼³°è¿¡ ¸Å¿ì Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÑ´Ù. ÀÌ´Â ¹æ»ç¼º µ¿À§¿ø¼ÒÀÇ »ý¹°º¹¿ø¿¡ ¸Å¿ì À¯¿ëÇÏ´Ù¡±°í ¼³¸íÇÏ¿´´Ù.

È£¿°¼º ¹ÚÅ׸®¾Æ À¯·¡ ´Ü¹éÁúÀº »ê¼º ¾Æ¹Ì³ë»êÀÌ Ç³ºÎÇÑ °ÍÀ¸·Î Àß ¾Ë·ÁÁ® ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ´Ü¹éÁúÀÇ »ê¼º Ç¥¸éÀ» ÅëÇØ ±Ý¼Ó À̿°ú »óÈ£ÀÛ¿ëÇÏ°Ô µÈ´Ù. ´Ü¹éÁú µ¥ÀÌÅ͹ðÅ© ³» ±â·ÏµÈ È¿¼Ò´Â 12°¡Áö Á¾·ùÀ̸ç, ³ªÆ®·ý, ¸¶±×³×½·, Ä®·ý, Ä®½·, ö, ¾Æ¿¬, ½ºÆ®·ÐƬ, Ä®½· À̿°ú °áÇÕÇϴ Ư¼ºÀ» °¡Áø´Ù. ´Ù¾çÇÑ È¿¼Ò ³» ÀÌ·¯ÇÑ ¹°ÁúÀÇ Á¸Àç´Â, ÀϹÝÀûÀ¸·Î È¿¼ÒÀÇ ±¸Á¶¿Í ±â´É¼ºÀÇ ÀüÁ¦ ¿ä°ÇÀÌ´Ù. ÀÌ·¯ÇÑ ±Ý¼Ó ģȭ·ÂÀ» ¹ÙÅÁÀ¸·Î, È£¿°¼º ¹Ì»ý¹° ´Ü¹éÁúÀ» È¥ÇÕ¹° ¶Ç´Â À¯µ¶ÇÑ ±Ý¼Ó À̿¿¡ ¿À¿°µÈ Áö¿ªÀ» º¹¿øÇÒ ¶§ ƯÁ¤ ±Ý¼ÓÀ» ºÐ¸®ÇÏ´Â µµ±¸·Î È°¿ëÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ, ´Ü¹éÁúÀ» Àΰø ½Ã¾àÀ» À§ÇÑ ¸ðµ¨·Î È°¿ëÇÒ ¼öµµ ÀÖ´Ù.

ÈÄÄí½Ã¸¶ »ç°í ÀÌÈÄ, ÇØ´ç Áö¿ªÀÇ Åä¾çÀº ¹æ»ç¼º ¼¼½·À¸·Î ´ëºÎºÐ ¿À¿°µÇ¾ú´Ù. 2.4PBq ¼öÁØÀÇ ¹æ»ç¼º ¹°ÁúÀÌ, dzȭ Èæ¿î¸ð, È­¼º¾Ï°ú º¯¼º¾Ï¿¡¼­ ¹ß°ßµÇ´Â ¿î¸ð ±¤¹° µîÀÇ Åä¾ç ÀÔÀÚ¿¡ °íÁ¤µÇ¾î ÀÖ´Ù. ¸¹Àº ¾çÀÇ Åä¾çÀÌ Á¦°ÅµÇ°í ÀÖÁö¸¸, ¾ÈÀüÇÑ Ã³¸®¸¦ À§ÇÑ ¹æ»ç¼º ¿ø¼Ò ÃßÃâ ¹æ¾È¿¡ ´ëÇÑ ³íÀÇ´Â ¾ÆÁ÷ ¸¶¹«¸®µÇÁö ¸øÇÏ°í ÀÖ´Ù. »ç°í Áö¿ª¿¡ ³²¾ÆÀÖ´Â Åä¾ç ¶ÇÇÑ ¼¼½·¿¡ ¿À¿°µÇ¾î ÀÖÁö¸¸, ȯ°æÀ¸·Î ħÃâµÇ°í ÀÖ´Â Åä¾ç ³» ¼¼½·À» °æÁ¦ÀûÀ¸·Î ÃßÃâÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀÌ ¾ø´Â »óÅÂÀÌ´Ù.

¿¬±¸ÁøÀº ÇÕ¼º»ý¹°ÇÐ ±â¼úÀ» ÅëÇØ, ChromohalobacterÀÇ º£Å¸-¶ôŸ¸¶¾ÆÁ¦¿Í °ü·ÃµÈ ´Ü¹éÁú ÈíÂøÁ¦¸¦ ¼³°èÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸¾Ò´Ù. ÀÚ¿¬ »óÅÂÀÇ ´Ü¹éÁú¿¡ ƯÁ¤ ±Ý¼Ó ģȭ·ÂÀÌ °­È­µÇµµ·Ï ÀçÁ¶ÇÕÇÏ´Â Á¢±Ù¹ýÀ» °í·ÁÇÒ ¼ö ÀÖ´Ù. ±× ´ÙÀ½À¸·Î, ¿À¿°Áö¿ª¿¡¼­ »ýÀåÇÒ ¼ö ÀÖ´Â ½Ä¹°ÀÇ »õ·Î¿î ¹ø½Ä °úÁ¤¿¡ Àû¿ëÇÒ À¯ÀüÀÚ¸¦ ÀçÁ¶ÇÕÇÏ¿© µµÀÔ½Ãų ¼ö ÀÖ´Ù. ½Ä¹° »Ñ¸®¿¡ ÀÌ·¯ÇÑ ´Ü¹éÁú ÈíÂø Ư¼ºÀÌ ¹ßÇöµÇ¸é Åä¾ç ³» ¼¼½·À» È¿À²ÀûÀ¸·Î ÃßÃâÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ½Ä¹°Àº ¹æ»ç´É ¹°ÁúÀÇ »õ·Î¿î º¸°ü¹°ÀÌ µÇ´Â °ÍÀÌ´Ù. ¼öÈ®µÈ ½Ä¹°Àº Åä¾ç ȯ°æÀ» Á¤È­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¾ÈÀüÇÏ°Ô Æó±âµÉ ¼ö ÀÖ´Ù.

Ryota Kuroki ¹Ú»ç´Â ¡°¼¼½· Á¦°Å´Â ¹«¾ùº¸´Ù Áß¿äÇÏÁö¸¸, ÀϺ»¿¡¼­´Â À¯ÀüÀûÀ¸·Î ÀçÁ¶ÇÕµÈ ½Ä¹°À» »ç¿ëÇÒ ¼ö ÀÖ´Â ¿©°ÇÀÌ ÃæºÐÈ÷ ¸¶·ÃµÇÁö ¾Ê¾Ò´Ù. µû¶ó¼­ ¿ì¸® ¿¬±¸ÁøÀº, È£¿°¼º ´Ü¹éÁúÀÇ ±¸Á¶ Á¤º¸·ÎºÎÅÍ À¯µµµÈ ÀçÁ¶ÇÕ ´Ü¹éÁúÀ» ÀÌ¿ëÇÏ¿© Èñ±Í ¹°ÁúÀ» ȸ¼öÇÒ ¼ö ÀÖ´Â ÀûÇÕÇÑ Àå¼Ò¸¦ ãµµ·Ï ³ë·ÂÇÏ°í ÀÖ´Ù¡±°í µ¡ºÙ¿´´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 3¿ù 16ÀÏ]

[¿ø¹®º¸±â]

Microbial soil cleanup at Fukushima

Proteins from salt-loving, halophilic, microbes could be the key to cleaning up leaked radioactive strontium and caesium ions from the Fukushima Dai-ichi Nuclear Power Plant incident in Japan. The publication of the X-ray structure of a beta-lactamase enzyme from one such microbe, the halophile Chromohalobacter sp. 560, reveals it to have highly selective cesium binding sites.

A collaboration between researchers at the Japan Atomic Energy Agency in Tokai, Ibaraki, Kyushu Synchrotron Light Research Center in Saga, Kagoshima University, and Florida State University, Tallahassee, USA, has led to a 1.8 to 2.9 angstrom resolution structure for this enzyme. Anomalous X-ray diffraction also revealed binding sites in the protein for Sr2+ and Cs+ ions, the team reports.

The team demonstrated how they could locate caesium ions in a specific site within the protein even in the presence of a nine-fold molar excess of sodium ions, which would normally out-compete any binding site. Intriguingly, the presence of strontium and caesium ions does not diminish the activity of the enzyme determined using isothermal titration calorimetry. "The observation of a selective and high-affinity caesium-binding site provides important information that is useful for the design of artificial caesium-binding sites that may be useful in the bioremediation of radioactive isotopes," the team explains.

It is well known that proteins from halophilic bacteria have an abundance of acidic amino acids and so present an acidic surface that can interact with a range of metal ions. There are twelve types of such enzymes recorded in the Protein Data Bank that can bind to sodium, magnesium, potassium, calcium, iron, zinc, strontium and cadmium ions. Indeed, the presence of these materials in various enzymes is usually a prerequisite for their structure and functionality. Because of this metal affinity, the team reasoned that proteins from halophiles might be useful as molecular mops for separating precious metals from mixtures or in remediation when toxic metals ions must be extracted selectively from a site. More specifically, the proteins could act as models for artificial reagents to be used in this context.

With respect to the Fukushima incident, the team explains that most of the radioactive caesium was deposited on the land at the site. Amounting to 2.4 petabequerels (PBq) of radioactivity and it is fixed in soil particles, comprising weathered biotite, a micaceous mineral found in many igneous and metamorphic rocks. Much of the soil has been removed, but the issue of extracting the radioactive elements for safe disposal has not been addressed. Moreover, the soil that remains at the site is also contaminated and no cost-effective method for extracting the caesium that leeches from it into the environment has been demonstrated.

The team suggests that protein absorbents related to the beta-lactamase from Chromohalobacter might be designed using the techniques of synthetic biology, the most likely approach being to engineer a native protein to make the affinity site described by the team. The genes for such an agent might then be engineered into new breeds of plant that could be grown on the site. With the protein absorbents expressed in plant roots, caesium could be extracted from the soil efficiently, the plants harvested and their new radioactive cargo disposed of safely, leaving behind improved soil.

"Although the removal of caesium is an important theme for us, public acceptance for the use of genetically engineered plants is not strong enough here in Japan, so we are going to shift our theme for finding useful sites to gather other rare materials using engineered proteins derived from the structural information of the halophilic proteins," team member Ryota Kuroki said.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] °©ÀÛ½º·¯¿î È«¼öÀÇ ¿¹Ãø
´ÙÀ½±Û [µ§¸¶Å©] ¿À´Ã³¯°ú 14¾ï ³â Àü ±âÈĺ¯È­¸¦ ÀÏÀ¸Å² ÈûÀº?
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.