Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[À¯·´] [2015] [·¯½Ã¾Æ] ±×·¡ÇÉ Ç¥¸é À§ÀÇ °áÇÔÀ» ÃøÁ¤ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ý
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-05-13 Á¶È¸¼ö 621
ÆÄÀÏ÷ºÎ
[·¯½Ã¾Æ] ±×·¡ÇÉ Ç¥¸é À§ÀÇ °áÇÔÀ» ÃøÁ¤ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ý
 
·¯½Ã¾Æ °úÇÐ ¾ÆÄ«µ¥¹Ì(Russian Academy of Sciences)ÀÇ Á©¸°½ºÅ° À¯±âÈ­ÇÐ ¿¬±¸¼Ò(Zelinsky Institute of Organic Chemistry)ÀÇ ¿¬±¸ÆÀÀº ÀûÀýÇÑ Á¶¿µÁ¦·Î ź¼Ò ¹°ÁúÀÇ Ç¥¸éÀ» ¸ÅÇÎÇÔÀ¸·Î½á ±×·¡ÇÉ Ãþ À§ÀÇ °áÇÔµéÀ» °¡½ÃÀûÀ¸·Î Ç¥ÇöÇϴµ¥ ¼º°øÇß´Ù. ÀÌ °£´ÜÇÑ À̹Ì¡ ¹æ¹ýÀº ´ë¸éÀû ź¼Ò Ç¥¸é À§ÀÇ °áÇÔ ÆÐÅÏÀ» È®ÀÎÇÒ ¼ö ÀÖ°Ô ÇÑ´Ù. ź¼Ò Ç¥¸é À§¿¡ Á¸ÀçÇÏ´Â ¸î Á¾·ùÀÇ °áÇÔµéÀº ¸î ºÐ ³»¿¡ ¹Ì½ÃÀûÀÎ À̹ÌÁö·Î Ç¥ÇöµÉ ¼ö ÀÖ´Ù. ÀÌ ¿¬±¸°á°ú´Â Chemical Science¿¡ °ÔÀçµÇ¾ú´Ù.

±×·¡ÇÉ°ú °ü·ÃµÈ 2Â÷¿ø ¹°ÁúµéÀº ¸Å¿ì Áß¿äÇÑ È­ÇÕ¹°µéÀ» ¸¸µé ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµÇ±â ¶§¹®¿¡ ¸¹Àº ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖ´Ù. ÀÌ°ÍÀº ±×·¡ÇÉ°ú °°Àº 2Â÷¿ø ¹°ÁúµéÀÌ Áö±ØÈ÷ ¾ãÀ¸¸é¼­ °­ÇÏ°í ¶Ù¾î³­ Àü±âÀû ¹× ¿­Àû Ư¼ºÀ» °¡Áö±â ¶§¹®ÀÌ´Ù. ÀÌ·¯ÇÑ µ¶Æ¯ÇÑ Æ¯¼ºÀ» °¡Áø Àç·áÀÇ ¿µÇâÀº ½ÇÁ¦·Î ¸Å¿ì Ŭ ¼ö ÀÖ´Ù. °úÇÐÀÚµéÀº ±×·¡ÇÉ¿¡ ÀÇÇؼ­ Çâ»óµÈ ±¤Ã˸Å, ¸Å¿ì È¿À²ÀûÀÎ ±¤ Àüȯ, Â÷¼¼´ë ½º¸¶Æ® Àç·á µîÀÌ °³¹ßµÉ ¼ö ÀÖÀ» °ÍÀÌ¶ó ¿¹°ßÇß´Ù.

°É¸²µ¹Àº ±×·¡ÇÉÀÇ °áÇÔÀ» Á¦¾îÇÒ ¼ö ¾ø´Ù´Â Á¡ÀÌ´Ù. Áï, °áÇÔÀÌ ¾ø´Â ÀÌ»óÀûÀÎ ±×·¡ÇÉ Ç¥¸éÀ» Á¦Á¶ÇϱⰡ ¸Å¿ì ¾î·Æ°í, °áÇÔµéÀº ´Ù¾çÇÑ Å©±â ¹× Çü»óÀ» °¡Áú ¼ö ÀÖ´Ù. ¶ÇÇÑ µ¿Àû °Åµ¿ ¹× º¯µ¿Àº °áÇÔµéÀÇ À§Ä¡¸¦ ´õ ¾Ë±â ¾î·Æ°Ô ¸¸µç´Ù. °áÇÔ À§Ä¡¸¦ ¾Ë°í Àç·áÀÇ Ç°ÁúÀ» ÃßÁ¤Çϱâ À§Çؼ­ ´ë¸éÀû ±×·¡ÇÉ ½ÃÆ®¸¦ Á¶»çÇÏ´Â ÇÁ·Î¼¼½º´Â ½Ã°£ÀÌ ¸¹ÀÌ °ÉÀÌ´Â ÀÛ¾÷ÀÌ´Ù. ¶ÇÇÑ Åº¼Ò Ç¥¸é À§ÀÇ °áÇÔÀ» ¼öÁýÇÏ°í °¡½ÃÈ­ÇÒ ¼ö ÀÖ´Â °£´ÜÇÑ ¹æ¹ýÀÌ ºÎÁ·ÇÏ´Ù.

À̹ø ¿¬±¸Áø¿¡ ÀÇÇؼ­ ¼öÇàµÈ ¿¬±¸ ÇÁ·ÎÁ§Æ®ÀÇ ¸ñÇ¥´Â ź¼Ò ¹°ÁúÀÇ Ç¥¸é À§ÀÇ °áÇÔ ¿µ¿ª¿¡ ¼±ÅÃÀûÀ¸·Î ºÎÂøµÉ ¼ö Àִ ƯÁ¤ Á¶¿µÁ¦(¼ö¿ë¼º Æȶóµã º¹ÇÕ¹°)¸¦ °³¹ßÇÏ´Â °ÍÀÌ´Ù. Æȶóµã(Pd)ÀÇ ºÎÂøÀº ³ª³ëÀÔÀÚµéÀÌ ÁýÀûµÇ°Ô Çϴµ¥, ÀÌ°ÍÀº ÀϹÝÀûÀÎ ÀüÀÚ Çö¹Ì°æÀ» »ç¿ëÇؼ­ ½±°Ô °ËÃâµÉ ¼ö ÀÖ´Ù. ź¼Ò ¼¾ÅÍ°¡ Á¡Á¡ ´õ ¹ÝÀÀ¼ºÀ» °¡Áú¼ö·Ï, Á¶¿µÁ¦ÀÇ °áÇÕÀº Á¡Á¡ ´õ °­ÇØÁø´Ù. µû¶ó¼­ ź¼Ò Ç¥¸é À§ÀÇ ¹ÝÀÀ¼º ¼¾ÅÍ¿Í °áÇÔ ºÎÀ§´Â ³ª³ëÅ©±â À̹Ì¡ ¹æ¹ýÀ» ÀÌ¿ëÇÔÀ¸·Î½á °íÇØ»óµµ ¹× ¶Ù¾î³­ ´ëºñ¸¦ °¡Áø 3Â÷¿ø °ø°£¿¡¼­ ¸ÅÇÎ(mapping)µÇ¾ú´Ù. °³¹ßµÈ ¹æ¹ýÀº Çü»óÀÇ Â÷ÀÌ¿Í È­ÇÐÀû ¹ÝÀÀ¼ºÀÇ Â÷ÀÌ ¶§¹®¿¡ ź¼Ò °áÇÔµéÀ» ±¸º°Çß´Ù. µû¶ó¼­ ÀÌ·± À̹Ì¡ ¹æ¹ýÀº È­ÇÐÀû ¹ÝÀÀ¼ºÀ» °ø°£ Çػ󵵷Π°¡½ÃÈ­µÉ ¼ö ÀÖ°Ô ÇÑ´Ù.

¡°Æȶóµã ¸¶Ä¿(marker)"·Î ź¼Ò ¹ÝÀÀ¼º ¼¾Å͸¦ ¸ÅÇÎÇÏ´Â °ÍÀº ±×·¡ÇÉ ÃþÀÇ ¹ÝÀÀ¼º¿¡ ´ëÇÑ µ¶Æ¯ÇÑ ÅëÂû·ÂÀ» ÁÖ¾ú´Ù. ÀÌ ¿¬±¸¿¡¼­ ³ªÅ¸³­ °Íó·³, 2,000°³ ÀÌ»óÀÇ ¹ÝÀÀ¼º ¼¾Å͵éÀº 1 µm2ÀÇ ±ÕÀÏÇÑ Åº¼Ò Àç·áÀÇ Ç¥¸éÀû¿¡ À§Ä¡µÉ ¼ö ÀÖ´Ù. ÀÌ ¿¬±¸´Â ³ª³ëÅ©±âÀÏ ¶§ ź¼Ò Àç·áÀÇ °ø°£ º¹À⼺À» º¸¿©ÁÖ¾ú´Ù. Ç¥¸é °áÇÔ ¹ÐµµÀÇ ¸ÅÇÎÀº Ç¥¸éÀû¿¡ µû¸¥ º¯È­¸¦ º¸¿©ÁÖ¾ú´Âµ¥, ÀÌ°ÍÀº °áÇÔ ±¸Á¶ÀÇ Á¾·ù¸¦ ¾Ë ¼ö ÀÖ°Ô Çß´Ù.

´õ Á¤È®ÇÏ°í ´õ ½¬¿î °üÂûÀ» À§Çؼ­ Á¶¿µÁ¦¸¦ »ç¿ëÇÏ´Â Áø´Ü ¹æ¹ýÀº ÀÇ·á¿ë ºÐ¾ß¿¡¼­ À¯¿ëÇÑ °ÍÀ¸·Î ÀÔÁõµÇ¾ú´Ù. ÀÌ ¿¬±¸´Â ¿øÀÚ Å©±â·Î Àç·á¸¦ Áø´ÜÇÒ ¼ö ÀÖ´Â ´ÜÃþ ÃÔ¿µ ºÐ¾ßÀÇ »õ·Î¿î °¡´É¼ºÀ» º¸¿©ÁØ´Ù. ÀÌ ¿¬±¸°á°ú´Â Àú³Î Chemical Science¿¡ ¡°Spatial imaging of carbon reactivity centers in Pd/C catalytic systems¡±¶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù(DOI: 10.1039/C5SC00802F).

±×¸². ź¼Ò ¹°ÁúÀÇ Ç°ÁúÀ» ÃßÁ¤ÇÏ°í ±×·¡ÇÉ ½Ã½ºÅÛÀÇ ¹°¸®Àû ¹× È­ÇÐÀû Ư¼ºÀ» ¿¹ÃøÇϴµ¥ Áß¿äÇÑ °áÇÔÀÇ À§Ä¡.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 5¿ù 13ÀÏ]

[¿ø¹®º¸±â]

Diagnostics of quality of graphene and spatial imaging of reactivity centers on carbon surface

A convenient procedure to visualize defects on graphene layers by mapping the surface of carbon materials with an appropriate contrast agent was introduced by a team of researchers from Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences (Moscow) involved in international collaborative project. Developed imaging (tomography) procedure has revealed organized patterns of defects on large areas of carbon surfaces. Several types of defects on the carbon surface can be "caught" and captured on the microscopic image within a few minutes. 

The article describing the research was published in Chemical Science journal of Royal Society of Chemistry.

Graphene and related 2D materials are anticipated to become the compounds of the century. It is not surprising -- graphene is extremely thin and strong, as well as possesses outstanding electrical and thermal characteristics. The impact of material with such unique properties may be really impressive. Scientists foresight the imminent appearance of novel biomedical applications, new generation of smart materials, highly efficient light conversion and photocatalysis reinforced by graphene. 

However, the stumbling block is that many unique properties and capabilities are related to only perfect graphene with controlled number of defects. However, in reality ideal defect-free graphene surface is difficult to prepare and defects may have various sizes and shapes. In addition, dynamic behaviour and fluctuations make the defects difficult to locate. The process of scanning of large areas of graphene sheets in order to find out defect locations and to estimate the quality of the material is a time-consuming task. Let alone a lack of simple direct methods to capture and visualize defects on the carbon surface. 

Joint research project carried out by Ananikov and co-workers revealed specific contrast agent -- soluble palladium complex -- that selectively attaches to defect areas on the surface of carbon materials. Pd attachment leads to formation of nanopartilces, which can be easily detected using a routine electron microscope. The more reactive the carbon center is, the stronger is the binding of contrast agent in the imaging procedure. Thus, reactivity centers and defect sites on a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a handy nanoscale imaging procedure. The developed procedure distinguished carbon defects not only due to difference in their morphology, but also due to varying chemical reactivity. Therefore, this imaging approach enables the chemical reactivity to be visualized with spatial resolution. 

Mapping carbon reactivity centers with "Pd markers" gave unique insight into the reactivity of the graphene layers. As revealed in the study, more than 2000 reactive centers can be located per 1 µm2 of the surface area of regular carbon material. The study pointed out the spatial complexity of the carbon material at the nanoscale. Mapping of surface defect density showed substantial gradients and variations across the surface area, which can possess a kind of organized structures of defects. 

Medical application of imaging (tomography) for diagnostics, including the usage of contrast agents for more accuracy and easier observation, has proven its utility for many years. The present study highlights a new possibility in tomography applications to run diagnostics of materials at atomic scale. 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹æ±Û¶óµ¥½Ã] õ¿¬°¡½º 'Áã¾îÂ¥³»±â'¿¡ ¾È°£Èû
´ÙÀ½±Û [¿µ±¹] ¹°ÀÌ Áö±¸¿¡ µµ´ÞÇÑ ¹æ¹ýÀ» º¸¿©ÁØ Áõ°Å´Â?
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.