Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[À¯·´] [2015] [¿µ±¹] Æú¸®¸Ó ¸âºê·¹ÀÎÀ¸·Î ¸¸µé¾îÁø ¶Ù¾î³­ ³ª³ëÇÊÅÍ
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-06-23 Á¶È¸¼ö 499
ÆÄÀÏ÷ºÎ
[¿µ±¹] Æú¸®¸Ó ¸âºê·¹ÀÎÀ¸·Î ¸¸µé¾îÁø ¶Ù¾î³­ ³ª³ëÇÊÅÍ
 
¿µ±¹ ÀÓÆ丮¾ó Ä®¸®Áö ·±´ø(Imperial College London) ¿¬±¸ÁøÀº Ãʹڸ·ÀÇ ÇÕ¼º ¸âºê·¹ÀÎÀ» ÀÌ¿ëÇÏ¿© À¯±â ¿ë¸Å¿¡¼­ ÀÛÀº ºÐÀÚ¸¦ ÇÊÅ͸µÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¿¬±¸°á°ú¸¦ ¹ßÇ¥Çß´Ù. Æú¸®¸¶À̵å·Î ¸¸µé¾îÁø À̹ø Çʸ§Àº 10³ª³ë¹ÌÅͺ¸´Ù ¾ã¾Æ¼­ ºÐÀÚ °Å¸§Á¾ÀÌ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Ù. 10³ª³ë¹ÌÅͺ¸´Ù ÀÛÀº ºÐÀÚ¸¸ ÇÊÅ͸¦ Åë°úÇÒ ¼ö ÀÖ¾î ±× º¸´Ù Å« ºÐÀÚ¿Í ÀÛÀº ºÐÀÚ¸¦ ³ª´­ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ÀÌ·¯ÇÑ ÇÊÅÍ´Â ¸Å¿ì º¹ÀâÇÑ ¼¶À¯ ±¸Á¶¸¦ ÇÏ°í ÀÖ´Ù. ¿¬±¸ÁøÀº ÇÊÅÍÀÇ Ç¥¸éÀûÀ» Áõ°¡½ÃÄÑ ´õ¿í È¿°úÀûÀÎ ÇÊÅÍÈ¿°ú¸¦ ¸¸µé¾î ³¾ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ÀÌ·¯ÇÑ ±¸Á¶´Â ¾àÇ°À» ÀçÁ¶ÇÏ´Â Á¤Á¦½Ã½ºÅÛ¿¡¼­ À¯±â ºÐÀÚ¸¦ °É·¯³»´Â µ¥¿¡¼­ºÎÅÍ ´ã¼öÈ­ °øÀåÀÇ ÇÊÅͱîÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ È°¿ëµÉ ¼ö ÀÖ´Ù.

¸âºê·¹ÀÎÀº À¶¸Å·ÎºÎÅÍ ¿©·¯ Á¾·ùÀÇ ºÐÀÚµéÀ» ¼±ÅÃÀûÀ¸·Î °Å¸¦ ¼ö ÀÖ´Ù. ´ã¼öÈ­ °øÀå¿¡¼­ ¹°¿¡¼­ ¼Ò±Ý ¼ººÐÀ» °É·¯³»´Â µ¥¿¡µµ È°¿ëµÉ ¼ö ÀÖ´Ù. ¶ÇÇÑ ÇǸ¦ Á¤·ùÇÏ´Â µ¥¿¡µµ »ç¿ëµÉ ¼ö ÀÖ´Ù. ±×·¯³ª ¾ÆÁ÷ ´ëºÎºÐ¿¡¼­´Â ÀÌ·¯ÇÑ ÇÊÅÍ ¸âºê·¹ÀÎÀ» »ç¿ëÇϱ⺸´Ù´Â Áõ·ù¿Í Èñ¼®°ú °°Àº ¹æ¹ýÀ» »ç¿ëÇÑ´Ù. ÀÌ´Â È­ÇÐÀûÀΠó¸® °úÁ¤¿¡¼­ ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀÌ È­Çй°¿¡ Ãë¾àÇÑ ¼ºÁúÀ» °¡Áö°í Àֱ⠶§¹®ÀÌ´Ù. ´õ¿íÀÌ ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀ¸·Î ¸¸µé¾îÁø ÇÊÅÍ´Â »ê¾÷ÀûÀ¸·Î È°¿ëÇÒ ¸¸Å­ ±Ô¸ð¸¦ Å°¿ì´Â °ÍÀÌ Èûµé´Ù.

¿¬±¸ÁøÀº À̹ø¿¡ °ÅÀÇ »ý¹°ÇÐÀû ¸âºê·¹Àο¡ °¡±î¿î µÎ²²ÀÇ ¾ãÀº ¸âºê·¹ÀÎÀ» ¸¸µå´Âµ¥ ¼º°øÇß´Ù. ¶ÇÇÑ À̹ø¿¡ °³¹ßµÈ ¸âºê·¹ÀÎÀº ¸Å¿ì °ß°íÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖ´Ù. ÃÖ´ë 50¹ÙÀÇ ³ôÀº ¾Ð·Â¿¡ °ßµô ¼ö ÀÖÀ¸¸ç ¿©·¯ À¯±â ¿ë¸Å¿¡ °­ÇÑ ³» ÀúÇ×¼ºÀ» °¡Áö°í ÀÖ´Ù. ¿¬±¸ÁøÀº À̹ø¿¡ ÇÁ·ÎÅäŸÀÔÀ¸·Î ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀ» ¸¸µé¾î ´ë·« 80¹Ð¸®¹ÌÅÍÀÇ ¿ë¸Å¸¦ °Å¸£´Â ½ÇÇèÀ» ÁøÇàÇßÀ¸¸ç ÀÌ·¯ÇÑ ±Ô¸ð´Â ÇâÈÄ »ê¾÷ÀûÀ¸·Î È°¿ëÇÒ ¼ö ÀÖÀ» ¸¸Å­ Å©°Ô ÇÏ´Â °ÍÀÌ °¡´ÉÇÒ °ÍÀ̶ó°í ³»´ÙºÃ´Ù.

¿¬±¸ÁøÀº ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀ» ¸¸µé±â À§Çؼ­ °è¸é ÁßÇÕ(interfacial polymerisation)À̶ó´Â ±â¼úÀ» »ç¿ëÇß´Ù. ¿¬±¸ÁøÀº ó¸® °øÁ¤À» Á¶ÀýÇÏ¿© ºÎµå·´°Å³ª °ÅÄ£ ¸·À» ¸ðµÎ ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú´Ù. °ÅÄ£ Ç¥¸é ±¸Á¶¸¦ °¡Áø ¸âºê·¹ÀÎÀÌ Ç¥¸éÀûÀÌ Å©°í °­µµµµ ³ô´Ù´Â °ÍÀ» È®ÀÎÇß´Ù. ¶ÇÇÑ 50¹ÙÀÇ ¾Ð·Â¿¡¼­µµ ½±°Ô ±¸°ÜÁöÁö ¾Ê´Â °ÍÀ» È®ÀÎÇß´Ù.

¿¬±¸ÁøÀº ¿©·¯ »ö»ó°ú Á¾·ùÀÇ ¿°»ö¾àÀ» ÀÌ¿ëÇÏ¿© ¸âºê·¹ÀÎÀÇ ¼º´ÉÀ» ½ÇÇèÇß´Ù. ±â±¸¸¦ ÀÌ¿ëÇÏ¿© ¾Ð·ÂÀ» °¡Çؼ­ ¸âºê·¹ÀÎÀÇ Æ¯¼ºÀ» Æò°¡Çß´Ù. ¿¬±¸ÁøÀº Èí¼öºÐ±¤°è¸¦ ÀÌ¿ëÇÏ¿© ÇÊÅ͸µµÈ ¹°ÁúÀ» ºÐ¼®Çß´Ù. ¿¬±¸ÁøÀº ÀÌ·¯ÇÑ ½ÇÇèÀ» ÅëÇؼ­ ¸âºê·¹ÀÎÀÇ ¿ì¼ö¼ºÀ» ÀÔÁõÇß´Ù. ¿¬±¸ÁøÀº ¶ÇÇÑ ±â¸§ Á¤Á¦¿¡¼­ºÎÅÍ ´ã¼öÈ­±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ģȯ°æÀûÀÎ ¸âºê·¹ÀÎÀÌ »ç¿ëÀÌ Æø³Ð°Ô »ç¿ëµÉ ¼ö ÀÖµµ·Ï °è¼Ó ¿¬±¸¸¦ À̾°¥ °ÍÀ̶ó°í ¹àÇû´Ù. À̹ø ¿¬±¸´Â Àú³Î Science ÃÖ±ÙÈ£¿¡ °ÔÀçµÇ¾ú´Ù. (Science DOI: 10.1126/science.aaa5058)

±×¸². ¹Ì¼¼ÇÑ ±¸Á¶·Î ÀÌ·ç¾îÁø ¸âºê·¹ÀÎÀÇ ÀüÀÚÇö¹Ì°æ »çÁø
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 6¿ù 23ÀÏ]

[¿ø¹®º¸±â]

Polymer membrane makes good nanofilter

Researchers at Imperial College London have succeeded in growing ultrathin synthetic membranes that can filter out small molecules from organic solutes. The films, which are made from polyamide, are less than 10 nm thick and work by allowing solvents to pass through them while retaining larger solute molecules. They can also be made to have a crumpled texture, which increases their surface area and makes them even more efficient at filtering. The structures might be used to purify organic mixtures in refineries, in drug manufacture and water desalination, to name but a few possible application areas.

Membranes are permeable barriers that can selectively filter out a range of molecules from solution. They can be used to remove salt from seawater in desalination plants, for example, and in dialysis for filtering blood. However, many industries use evaporation and distillation techniques (which are expensive in themselves) rather than filtering membranes because these films are often not very robust to the organic solvents employed in most chemical processes. What is more, many of the membranes made thus far cannot easily be scaled up to the sizes needed for industrial applications.

Now, however, a team of researchers led by Andrew Livingston say that their membrane might solve this last problem. The new film is less than 10 nm thick (nearly as thin as a biological membrane, which is 5–6 nm) and so is extremely permeable. It is also mechanically robust, can filter organic liquids at high pressures of around 50 bar and is resistant to a wide range of organic solvents. And that is not all. Although the prototype membrane measures around 80 mm across, Livingston and colleagues say that it could be scaled up to much larger areas, suitable for use in industrial processes.

Interfacial polymerisation

The researchers used a technique called interfacial polymerisation to make their membrane, growing it at an interface where two monomers meet to form a polymer. They were able to control the process and make either a smooth or crumpled film. They found that the crumpled structure was stronger and had a greater surface area. Surprisingly, the crumpled film did not buckle, even at pressures of 50 bar.

The Imperial College team tested the membrane in the lab by passing through it a mixture of solvent and dye molecules of different colours and sizes. They percolated the solution through the membrane at high pressure using a device called a dead-end cell to find out whether they could filter out everything but the solvent. They observed the filtering process using absorption spectroscopy, which relies on passing light of different colours (wavelengths) though the sample to determine which molecules pass through the membrane. The filter worked very well, with only the solvent passing through.

Crumpled membrane is better

The team also found that a crumpled membrane worked even better as a filter than a smooth one. Indeed, the crumpled structure filtered out substances four times faster than a smooth film of the same thickness, and about 1000 times faster than a commercial membrane.

Membranes are currently used in desalinating water, so that it is fit to drink, and in dialysis, says Livingstone, but the drawback is that industry has not been able to use these structures more routinely because of design limitations when they are applied to organic systems. "Our research suggests that we can overcome these challenges, which could make these membranes more attractive for industries ranging from pharmaceutics to oil refining. The energy and environmental benefits could be massive here," he adds.

Team member Santanu Karan says that he and his colleagues are now working more closely with industry to further refine their membranes. "We hope our work will lead to new collaborations and ultimately to improvements in the way industry uses separation processes."

The team also plans to attach the thin polymer films to supports at a larger scale, Livingston tells nanotechweb.org.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀϺ»] ¼ö¼Ò ½ºÅ×À̼ÇÀÌ ºÎÁ·: ±¹°¡¿¡ Ãß°¡ÀûÀÎ ±ÔÁ¦¿ÏÈ­ ¿ä±¸
´ÙÀ½±Û [Áß±¹] È­ºÏÁö¿ª¿¡ ¹ß»ýÇÏ´Â ¸ÕÁö¾È°³¿Í ȯ·ùÀÇ °ü°è¼º
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.