Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[À¯·´] [2015] [°øÅë] Àü ¼¼°è »ç¸· ¾Æ·¡¿¡¼­ °ËÃâµÈ ź¼Ò ½ÌÅ©
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-08-03 Á¶È¸¼ö 704
ÆÄÀÏ÷ºÎ
[°øÅë] Àü ¼¼°è »ç¸· ¾Æ·¡¿¡¼­ °ËÃâµÈ ź¼Ò ½ÌÅ©

Àü ¼¼°è »ç¸·(deserts)ÀÌ Àΰ£ È°µ¿À¸·Î ¹èÃâµÇ´Â ±âÈĸ¦ º¯È­½ÃÅ°´Â ÀÌ»êȭź¼Ò(carbon dioxide)ÀÇ ÀϺθ¦ ÀúÀåÇÒ ¼ö ÀÖ´Ù°í »õ·Î¿î ¿¬±¸´Â Á¦¾ÈÇß´Ù. »ç¸· ¾Æ·¡ ±¤´ëÇÑ ´ë¼öÃþ(aquifer, ÁöÇϼö¸¦ Ç°°í ÀÖ´Â ÁöÃþ)Àº À°ÁöÀÇ ¸ðµç ½Ä¹°º¸´Ù ´õ ¸¹Àº ź¼Ò¸¦ º¸À¯ÇÒ ¼ö ÀÖ´Ù°í µ¿ ¿¬±¸´Â ¹àÇû´Ù.

Àΰ£Àº È­¼® ¿¬·áÀÇ ¿¬¼Ò¿Í ¹ú並 ÅëÇÏ¿© ´ë±â·Î ÀÌ»êȭź¼Ò¸¦ Ãß°¡ÇÑ´Ù. ÀÌ·¯ÇÑ Åº¼ÒÀÇ ¾à 40%´Â ´ë±â¿¡ ³²¾Æ ÀÖÀ¸¸ç, ¾à 30%´Â ÇؾçÀ¸·Î À¯ÀÔµÈ´Ù°í ¹Ì±¹ UCAR(University Corporation for Atmospheric Research)Àº ¹àÇû´Ù. °úÇÐÀÚµéÀº ³²¾Æ Àִ ź¼Ò°¡ À°»óÀÇ ½Ä¹°¿¡ Èí¼öµÈ´Ù°í »ý°¢ÇØ¿ÔÁö¸¸, ½ÇÁ¦·Î ¼öÇàµÈ ÃøÁ¤Àº ³²¾Æ Àִ ź¼ÒÀÇ ¸ðµç ¾çÀ» Èí¼öÇÒ ¼ö ¾ø´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. °úÇÐÀÚµéÀº ºÎ°¡ÀûÀΠź¼Ò°¡ ¼ÒÀ§ ¼Ò½ÇµÈ ź¼Ò ½ÌÅ©(missing carbon sink, ¼Ò½ÇµÈ ź¼Ò Èí¼ö°è)¶ó°í ºÒ¸®´Â À°ÁöÀÇ Àå¼Ò¸¦ ã¾Ò´Ù.

»õ·Î¿î ¿¬±¸´Â ÀÌ·¯ÇÑ Åº¼ÒÀÇ ÀϺΰ¡ °ü°³(irrigation)¿¡ ÀÇÇØ ¾ÇÈ­µÇ´Â °øÁ¤À¸·Î Àü ¼¼°è »ç¸·ÀÇ ¾Æ·¡·Î »ç¶óÁú °ÍÀ̶ó°í Á¦¾ÈÇß´Ù. °úÇÐÀÚµéÀº Áß±¹ »ç¸·À» Åë°úÇÏ´Â ¹°ÀÇ È帧À» Á¶»çÇÏ¿©, ´ë±â·ÎºÎÅÍ À¯·¡ÇÑ Åº¼Ò°¡ ³óÀÛ¹°¿¡ ÀÇÇØ Èí¼öµÇ¾î Åä¾çÀ¸·Î ¹èÃâµÇ¸ç, ³ó¾÷ÀÌ 2000³â Àü ƯÁ¤ Áö¿ª¿¡ À¯À﵃ ¶§ ½ÃÀÛµÈ °øÁ¤ÀÎ ÁöÇϼö¸¦ ÅëÇÏ¿© ÁöÇÏ·Î À̵¿ÇÑ´Ù´Â °ÍÀ» È®ÀÎÇß´Ù.

ÁöÇÏ ´ë¼öÃþÀº ź¼Ò°¡ ´ë±â·Î ´Ù½Ã ¹èÃâµÉ ¼ö ¾ø´Â Áö¿ªÀÎ ±íÀº »ç¸· ¾Æ·¡¿¡ ¿ëÇØµÈ Åº¼Ò¸¦ ÀúÀåÇÑ´Ù°í »õ·Î¿î ¿¬±¸´Â Á¦¾ÈÇß´Ù.

ÀÌ ¿¬±¸´Â ³ó¾÷ÀÌ ÀÌÀü¿¡ »ý°¢Çß´ø °Í º¸´Ù ¾à 14¹è ´õ ¸¹Àº ź¼Ò¸¦ ÀúÀåÇϱ⠶§¹®¿¡, ¸Å³â ÀÌ·¯ÇÑ ÁöÇÏ »ç¸· ´ë¼öÃþÀ¸·Î ź¼Ò°¡ À¯ÀԵǴ °ÍÀ¸·Î ÃßÁ¤Çß´Ù. ÀÌ ÁöÇÏ ÀúÀå¼Ò´Â ºÏ¹Ì Å©±â¸¦ µ¤À» ¼ö ÀÖ´Â °ÍÀ¸·Î, °úÇÐÀÚµéÀÌ Ã£°í ÀÖ´Â ¼Ò½ÇµÈ ź¼Ò ½ÌÅ©ÀÇ ÃÖ¼Ò ºñÀ²·Î Ãß»êµÉ ¼ö ÀÖ´Ù.

ź¼Ò´Â ¸ð·¡ÀÇ µÎ²¨¿î Ãþ¿¡ ÀÇÇØ µ¤¿© ÀÖ´Â »ç¸· ¾Æ·¡ÀÇ ÁöÁú ±¸Á¶(geological structure)¿¡ ÀúÀåµÇ°í, °áÄÚ ´ë±â·Î º¹±ÍÇÏÁö ¾Ê´Â´Ù°í Áß±¹ ½ÅÀåÀÇ ¿ì·ç¹«Ä¡(Urumqi)¿¡ À§Ä¡ÇÑ Áß±¹ °úÇпø(Chinese Academy of Sciences) ¼Ò¼ÓÀÇ »ç¸· »ý¹°Áö±¸È­ÇÐÀÚÀÎ Yan Li´Â ¹àÇû´Ù. Yan Li´Â Geophysical Research Letters¿¡ ¹ßÇ¥µÈ °ü·Ã ¿¬±¸ÀÇ ÁÖÀúÀÚÀÌ´Ù.

ź¼Ò ½ÌÅ©ÀÇ À§Ä¡¸¦ ¾Æ´Â °ÍÀº ¹Ì·¡ ±âÈÄ º¯È­¸¦ ¿¹ÃøÇÏ°í Áö±¸ ź¼Ò ¼öÁö ¶Ç´Â Àΰ£ÀÌ Áö±¸ ±â¿Â¿¡ ÁÖ¿ä º¯È­¸¦ ÃÊ·¡ÇÏÁö ¾Ê°í ¿¬¼Ò½Ãų ¼ö ÀÖ´Â È­¼® ¿¬·áÀÇ ¾ç¿¡ ´ëÇÑ °è»êÀ» °­È­½ÃÅ°±â À§ÇÏ¿© »ç¿ëµÇ´Â ¸ðµ¨À» °³¼±ÇÒ ¼ö ÀÖ´Ù°í µ¿ ³í¹®ÀÇ ÀúÀÚµéÀº ¹àÇû´Ù.

ºñ·Ï Àü ¼¼°è¿¡ ¼ö¸¹Àº ¼Ò½ÇµÈ ź¼Ò ½ÌÅ©°¡ ÀÖ´Ù°í ÇÏ´õ¶óµµ, »ç¸· ´ë¼öÃþ(desert aquifer)Àº Áß¿äÇÑ ÀúÀå¼Ò°¡ µÉ ¼ö ÀÖ´Ù°í ÀÌ ¿¬±¸¿¡´Â Âü¿©ÇÏÁö ¾Ê¾Ò´ø Ķ¸®Æ÷´Ï¾Æ ´ëÇÑ ¸®¹ö»çÀ̵å Ä·ÆÛ½º(University of California-Riverside) »êÇÏ º¸Á¸ »ý¹°ÇÐ ¿¬±¸¼Ò(Center for Conservation Biology) ¼Ò¼ÓÀÇ Åä¾ç »ýÅÂÇÐÀÚÀÎ Michael AllenÀº ¹àÇû´Ù.

¸¸¾à ³óºÎ¿Í ¹° °ü¸®ÀÚ°¡ ½ÉÇÏ°Ô °ü°³µÈ ³»·ú »ç¸·ÀÌ Àü ¼¼°è ź¼Ò¸¦ ÀúÀåÇÏ´Â ¿ªÇÒÀ» ÀÌÇØÇÑ´Ù¸é, ±×µéÀÌ ¾ó¸¶³ª ¸¹Àº ź¼Ò°¡ ÀÌ·¯ÇÑ ÁöÇÏ ÀúÀå¼Ò·Î À¯ÀԵǴ°¡¸¦ º¯°æÇÒ ¼ö ÀÖÀ» °ÍÀ̶ó°í Michael AllenÀº ¹àÇû´Ù. ÀÌ°ÍÀº ³óºÎ¿Í °ü¸®ÀÚµéÀÌ Åº¼Ò ¼öÁö ¹®Á¦¸¦ ÇØ°áÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ´Ü°è¸¦ ¼öÇàÇÒ ¼ö ÀÖÀ½À» ÀǹÌÇÑ´Ù°í Michael AllenÀº ¹àÇû´Ù.

¾î´À À§Ä¡ÀÇ »ç¸·ÀÌ ¿©ºÐÀÇ Åº¼Ò¸¦ °¨Ãß°í ÀÖ´ÂÁö¸¦ ±Ô¸íÇϱâ À§ÇÏ¿©, Yan Li¿Í ±×ÀÇ µ¿·á ¿¬±¸ÁøÀº º£³×¼ö¿¤¶ó Å©±âÀÇ Áß±¹ ½ÅÀå¿¡ À§Ä¡ÇÑ Å¸¸² ºÐÁö(Tarim Basin)·ÎºÎÅÍ ¼ö°ÅÇÑ ¹° ½Ã·á¸¦ ºÐ¼®Çß´Ù. »ê¾Ç Áö´ë ÁÖº¯¿¡ ÀÖ´Â ÇÏõÀ¸·ÎºÎÅÍ ¹è¼öµÈ ¹°Àº ºÐÁö Áß¾Ó¿¡ »ç¸·À» ¿¡¿ö½Î´Â ³ó°¡¸¦ Áö¿øÇÑ´Ù. ¿¬±¸ÁøÀº °¢ ¹° ½Ã·á¿¡¼­ ź¼ÒÀÇ ¾çÀ» ÃøÁ¤ÇÏ°í, ¹°ÀÌ ÁöÇÏ¿¡¼­ ¾ó¸¶³ª ¿À·¡ ÀÖ¾ú´ÂÁö¸¦ °è»êÇϱâ À§ÇÏ¿© ź¼ÒÀÇ ³ªÀÌ(age of the carbon)¸¦ »êÃâÇß´Ù.

¿¬±¸´Â ¹°¿¡ ¿ëÇصǾî ÀÖ´Â ÀÌ»êȭź¼ÒÀÇ ¾çÀÌ °ü°³µÈ Áö¿ªÀ» Åë°úÇÏ¿© ¿©°úµÉ ¶§ 2¹è·Î Áõ°¡ÇÑ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. °úÇÐÀÚµéÀº °ø±â Áß ÀÌ»êȭź¼Ò°¡ »ç¸· ³óÀÛ¹°¿¡ ÀÇÇØ Èí¼öµÆ´Ù´Â »ç½ÇÀ» Á¦¾ÈÇß´Ù. ÀÌ·¯ÇÑ Åº¼Ò Áß ÀϺδ ½Ä¹°ÀÇ »Ñ¸®¸¦ ÅëÇÏ¿© Åä¾çÀ¸·Î ¹èÃâµÈ´Ù. µ¿½Ã¿¡, ¹Ì»ý¹° ¿ª½Ã ¹Ì»ý¹°ÀÌ ´çÀ» ºÐÇØÇÒ ¶§, Åä¾ç¿¡ ÀÌ»êȭź¼Ò¸¦ Ãß°¡ÇÑ´Ù. °ÇÁ¶ÇÑ »ç¸·¿¡¼­ ÀÌ»êȭź¼Ò ±âü´Â Åä¾çÀ» ºüÁ® ³ª¿Í ´ë±â·Î À¯ÀԵȴÙ. ±×·¯³ª °ÇÁ¶ ³ó°¡(arid farms)¿¡ ´ëÇÏ¿©, »Ñ¸®¿Í ¹Ì»ý¹°¿¡ ÀÇÇØ ¹èÃâµÈ ÀÌ»êȭź¼Ò´Â °ü°³¼ö(irrigation water)¿¡ ÀÇÇØ Èí¼öµÈ´Ù°í »õ·Î¿î ¿¬±¸´Â ¹àÇû´Ù.

ºñ·Ï ź¼Ò ¸ÅÀåÀÇ ÀÌ·¯ÇÑ °øÁ¤ÀÌ ÀÚ¿¬ÀûÀ¸·Î ¹ß»ýÇÑ´Ù°í ÇÏ´õ¶óµµ, °úÇÐÀÚµéÀº ¸Å³â Ÿ¸² »ç¸· ¾Æ·¡·Î »ç¶óÁö´Â ź¼ÒÀÇ ¾çÀÌ ³ó¾÷À» ÀÌÀ¯·Î °ÅÀÇ 12¹è ´õ ³ô¾ÆÁö´Â °ÍÀ¸·Î Ãß»êÇß´Ù. ¿¬±¸ÁøÀº Ÿ¸² »ç¸·¿¡ »ç¸· ´ë¼öÃþÀ¸·Î À¯ÀԵǴ ź¼ÒÀÇ ¾çÀº ³ó°æÀÌ °³½ÃµÇ¾î ¹ø¼ºÇϱ⠽ÃÀÛÇÑ ½ÇÅ© ·Îµå ÁÖº¯¿¡¼­ ±ÞÁõÇß´Ù´Â °ÍÀ» È®ÀÎÇß´Ù.

ź¼Ò°¡ dzºÎÇÑ ¹°ÀÌ ³ó°¡¿Í ÇÏõ Àα٠´ë¼öÃþÀ¸·Î Èê·¯ µé¾î°£ ÈÄ, ÀÌ·¯ÇÑ ¹°Àº »ç¸·ÀÇ Á᫐ ÂÊ ¿·À¸·Î À̵¿ÇÏ°í, ÀÌ °øÁ¤Àº ´ë·« 10,000³âÀÇ ½Ã°£ÀÌ ¼Ò¿äµÈ´Ù. ¹°¿¡ ¿ëÇØµÈ Æ¯Á¤ ź¼Ò´Â ¼öõ ³â µ¿¾È ³²¾Æ ÀÖ´Â »ç¸· Áß½ÉÀ¸·Î ´ë¼öÃþÀ» Åë°úÇÏ¿© È带 ¶§ ÁöÇÏ¿¡ ³²¾Æ ÀÖ´Ù°í µ¿ ¿¬±¸´Â Á¦¾ÈÇß´Ù.

ź¼Ò°¡ ¿ª»çÀûÀ¸·Î »ç¸·À¸·Î À¯ÀԵǴ ´Ù¾çÇÑ ºñÀ²À» ±â¹ÝÀ¸·Î, ¿¬±¸ÀÇ ÀúÀÚµéÀº 200¾ï ¹ÌÅÍÅæÀÇ Åº¼Ò°¡ Ÿ¸² ºÐÁö »ç¸· ¾Æ·¡ ÀúÀåµÇ´Â °ÍÀ¸·Î ÃßÁ¤Çß´Ù. ´ë¼öÃþ¿¡ ¿ëÇØµÈ Åº¼Ò´Â ºÏ¹Ì ¿À´ëÈ£¿¡ º¸À¯ÇÏ°í ÀÖ´Â ¹°ÀÇ ¾à 10¹èÀÌ´Ù. ¿¬±¸ÀÇ ÀúÀÚ´Â Àü ¼¼°è »ç¸· ´ë¼öÃþÀÌ Åº¼ÒÀÇ À°»ó¿¡ »ì¾Æ ÀÖ´Â ½Ä¹°¿¡ ÀúÀåµÈ ¾çº¸´Ù 25% ´õ ¸¹Àº ¾à 1Á¶ ¹ÌÅÍÅæÀÇ Åº¼Ò¸¦ ÇÔÀ¯ÇÏ°í ÀÖ´Â °ÍÀ¸·Î ÃßÁ¤Çß´Ù.

Yan Li´Â ¹° À̵¿ À¯Çü°ú °ü·ÃµÈ ´õ ¸¹Àº Á¤º¸¿Í ´Ù¸¥ »ç¸· Áö¿ªÀ¸·ÎºÎÅÍ Åº¼Ò ÃøÁ¤ÀÌ Áö±¸ ÁÖº¯ÀÇ »ç¸· ¾Æ·¡ ÀúÀåµÈ ź¼ÒÀÇ ÃßÁ¤À» °³¼±Çϴµ¥ ÇÊ¿äÇÏ´Ù°í ¹àÇû´Ù.

[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 8¿ù 3ÀÏ]
 
[¿ø¹®º¸±â]
 
'Carbon sink' detected underneath world's deserts

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according to the new research.

Humans add carbon dioxide to the atmosphere through fossil fuel combustion and deforestation. About 40 percent of this carbon stays in the atmosphere and roughly 30 percent enters the ocean, according to the University Corporation for Atmospheric Research. Scientists thought the remaining carbon was taken up by plants on land, but measurements show plants don't absorb all of the leftover carbon.

Scientists have been searching for a place on land where the additional carbon is being stored—the so-called "missing carbon sink."

The new study suggests some of this carbon may be disappearing underneath the world's deserts - a process exacerbated by irrigation. Scientists examining the flow of water through a Chinese desert found that carbon from the atmosphere is being absorbed by crops, released into the soil and transported underground in groundwater—a process that picked up when farming entered the region 2,000 years ago.

Underground aquifers store the dissolved carbon deep below the desert where it can't escape back to the atmosphere, according to the new study.

The new study estimates that because of agriculture roughly 14 times more carbon than previously thought could be entering these underground desert aquifers every year. These underground pools that taken together cover an area the size of North America may account for at least a portion of the "missing carbon sink" for which scientists have been searching.

"The carbon is stored in these geological structures covered by thick layers of sand, and it may never return to the atmosphere," said Yan Li, a desert biogeochemist with the Chinese Academy of Sciences in Urumqi, Xinjiang, and lead author of the study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union. "It is basically a one-way trip."

Knowing the locations of carbon sinks could improve models used to predict future climate change and enhance calculations of the Earth's carbon budget, or the amount of fossil fuels humans can burn without causing major changes in the Earth's temperature, according to the study's authors.

Although there are most likely many missing carbon sinks around the world, desert aquifers could be important ones, said Michael Allen, a soil ecologist from the Center for Conservation Biology at the University of California-Riverside who was not an author on the new study.

If farmers and water managers understand the role heavily-irrigated inland deserts play in storing the world's carbon, they may be able to alter how much carbon enters these underground reserves, he said.
"This means [managers] can take practical steps that could play a role in addressing carbon budgets," said Allen.

Examining desert water

To find out where deserts tucked away the extra carbon, Li and his colleagues analyzed water samples from the Tarim Basin, a Venezuela-sized valley in China's Xinjiang region. Water draining from rivers in the surrounding mountains support farms that edge the desert in the center of the basin.

The researchers measured the amount of carbon in each water sample and calculated the age of the carbon to figure out how long the water had been in the ground.

The study shows the amount of carbon dioxide dissolved in the water doubles as it filters through irrigated fields. The scientists suggest carbon dioxide in the air is taken up by the desert crops. Some of this carbon is released into the soil through the plant's roots. At the same time, microbes also add carbon dioxide to the soil when they break down sugars in the dirt. In a dry desert, this gas would work its way out of the soil into the air. But on arid farms, the carbon dioxide emitted by the roots and microbes is picked up by irrigation water, according to the new study.

In these dry regions, where water is scarce, farmers over-irrigate their land to protect their crops from salts that are left behind when water used for farming evaporates. Over-irrigating washes these salts, along with carbon dioxide that is dissolved in the water, deeper into the earth, according to the new study.
 
Although this process of carbon burial occurs naturally, the scientists estimate that the amount of carbon disappearing under the Tarim Desert each year is almost 12 times higher because of agriculture. They found that the amount of carbon entering the desert aquifer in the Tarim Desert jumped around the time the Silk Road, which opened the region to farming, begin to flourish.

After the carbon-rich water flows down into the aquifer near the farms and rivers, it moves sideways toward the middle of the desert, a process that takes roughly 10,000 years.

Any carbon dissolved in the water stays underground as it makes its way through the aquifer to the center of the desert, where it remains for thousands of years, according to the new study.

Estimating carbon storage

Based on the various rates that carbon entered the desert throughout history, the study's authors estimate 20 billion metric tons (22 billion U.S. tons) of carbon is stored underneath the Tarim Basin desert, dissolved in an aquifer that contains roughly 10 times the amount of water held in the North American Great Lakes.

The study's authors approximate the world's desert aquifers contain roughly 1 trillion metric tons (1 trillion U.S. tons) of carbon—about a quarter more than the amount stored in living plants on land.

Li said more information about water movement patterns and carbon measurements from other desert basins are needed to improve the estimate of carbon stored underneath deserts around the globe.

Allen said the new study is "an early foray" into this research area. "It is as much a call for further research as a definitive final answer," he said.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] Ķ¸®Æ÷´Ï¾Æ, ´ã¼öÈ­ È°¼ºÈ­¿¡ ´ëÇÑ °í¹Î
´ÙÀ½±Û [½ºÆäÀÎ] °íÁØÀ§ ¹æ»ç¼º Æó±â¹° óºÐÀå ÀûÇÕ ÆÇÁ¤
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.