Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[ºÏ¾Æ¸Þ¸®Ä«] [2015] [¹Ì±¹] ÀÌ»êȭź¼Ò¸¦ Èí¼öÇÏ¿© °íºÎ°¡°¡Ä¡ Á¦Ç°À¸·Î ÀüȯÇÏ´Â ¹æ¹ý
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-09-03 Á¶È¸¼ö 336
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ÀÌ»êȭź¼Ò¸¦ Èí¼öÇÏ¿© °íºÎ°¡°¡Ä¡ Á¦Ç°À¸·Î ÀüȯÇÏ´Â ¹æ¹ý

ÀÌ»êȭź¼Ò¸¦ ÀÏ»êȭź¼Ò¿Í ´Ù¸¥ °íºÎ°¡°¡Ä¡ÀÇ Åº¼Ò Á¦Ç°À¸·Î ÀüȯÇÏ´Â °ÍÀº ûÁ¤¿¡³ÊÁö ¿¬±¸¿¡¼­ Áß¿äÇÑ ³­Á¦ÀÌ´Ù. ÀÌ ¿¬±¸¿¡¼­ ¿¬±¸ÁøÀº ¼ö¿ë¾×¿¡¼­ ÀÌ»êȭź¼Ò¸¦ ÀÏ»êȭź¼Ò·Î ÀüȯÇÏ´Â Àü±âÈ­ÇÐÀû ȯ¿øÀ» ¼öÇàÇϱâ À§ÇÏ¿© Ã˸ŠÀç·á¸¦ ÁغñÇϱâ À§ÇÏ¿© À̹Π°áÇÕ(imine bond)À» ÅëÇÏ¿© À¯±â ¹Þħ´ë(organic strut)¿¡ ÀÇÇØ ¿¬°áµÈ ÄÚ¹ßÆ® Æ÷¸£ÇǸ° Ã˸ŷΠÀÌ·ç¾îÁø ºôµù ºí·ÏÀÎ COFs(covalent organic frameworks)ÀÇ ¸ðµâ ÃÖÀûÈ­¸¦ º¸°íÇß´Ù.

ÀÌ»êȭź¼Ò¸¦ Æ÷ȹ ¹× ÀúÀåÇϴµ¥ ¸Å¿ì À¯¸ÁÇÑ ºÐÀÚ ½Ã½ºÅÛ(molecular system)Àº º¯°æÀÌ °¡´ÉÇϱ⠶§¹®¿¡, ÃÖ±Ù Æ÷ȹµÈ ÀÌ»êȭź¼Ò¸¦ °íºÎ°¡°¡Ä¡ÀÇ È­Çй°Áú(valuable chemical products)·Î ÀüȯÇÏ´Â Ã˸ŷΠÀ¯¸ÁÇÏ´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎ(DOE; U.S. Department of Energy) »êÇÏ ·Î·»½º ¹öŬ¸® ±¹¸³¿¬±¸¼Ò(Lawrence Berkeley National Laboratory, ÀÌÇÏ Berkeley Lab) ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀº ÀÌ»êȭź¼Ò ȯ¿ø Ã˸Å(carbon dioxide reduction catalyst)ÀÇ ºÐÀÚ¸¦ COFs(covalent organic frameworks)ÀÇ ½ºÆÝÁö¿Í °°Àº °áÁ¤¿¡ °áÇÕÇÏ¿´´Ù. ÀÌ°ÍÀº ÀÌ»êȭź¼Ò¸¦ Èí¼öÇÒ »Ó ¾Æ´Ï¶ó, ÀÌ»êȭź¼Ò¸¦ ¿¬·á, ¾àÇ° ¹× Çöó½ºÆ½À» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ºôµùºí·ÏÀ¸·Î ÀÛ¿ëÇÏ´Â ÀÏ»êȭź¼Ò·Î ¼±ÅÃÀûÀ¸·Î ȯ¿ø½Ãų ¼ö ÀÖ´Â ºÐÀÚ ½Ã½ºÅÛÀ» »ý¼ºÇß´Ù.

ÀÌ»êȭź¼Ò¸¦ À§ÇÑ ±ÕÀÏ ¶Ç´Â ºÒ±ÕÀÏ Ã˸Ÿ¦ °³¹ßÇÏ·Á´Â ¼ö¸¹Àº ½Ãµµ°¡ ÀÖ¾úÁö¸¸, COFs¸¦ »ç¿ëÇÏ´Â »ç·Ê´Â ¿¬±¸ÁøÀ¸·Î ÇÏ¿©±Ý ÃÖÀûÀÇ °á°ú¸¦ È¥ÇÕ ¹× °áÇÕ½Ãų ¼ö ÀÖ°Ô ÇØÁÖ¾úÀ¸¸ç, ÀÌ´Â ¿¬±¸ÁøÀÌ COFÀÇ °ß°íÇÑ °áÁ¤ Ư¼º°ú ´õºÒ¾î, Ã˸Ÿ¦ ¼±ÅÃÇÔÀ¸·Î½á ºÐÀÚ Á¦¾î¸¦ ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù°í ÀÌ ¿¬±¸ÀÇ °øµ¿ ÀúÀÚÀ̸ç, Berkeley Lab È­ÇкΠ¼Ò¼ÓÀÇ È­ÇÐÀÚÀÎ Christopher ChangÀº ¹àÇû´Ù. ÇöÀç±îÁö ÀÌ·¯ÇÑ ´Ù°ø¼º Àç·á´Â ź¼Ò Æ÷ȹ ¹× °Ý¸®¿¡¸¸ ÁÖ·Î »ç¿ëµÇ¾î ¿ÔÁö¸¸, ¿¬±¸ÁøÀº ÀÌ»êȭź¼Ò Ã˸ŠÀÛ¿ë¿¡ »ç¿ëµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿© ÁÖ¾úÀ¸¸ç, ¿¬±¸ °á°ú´Â Ã˸ŠÀÛ¿ë°ú ¿¡³ÊÁö¿¡¼­ ±¤¹üÀ§ÇÑ °¡´ÉÇÑ ÀÀ¿ë¿¡ »õ·Î¿î ÁöÆòÀ» ¿­¾ú´Ù°í ChangÀº ¹àÇû´Ù.

Chang°ú COFs¸¦ °í¾ÈÇÑ Berkeley Lab »êÇÏ Àç·á°úÇкΠ¼Ò¼ÓÀÇ È­ÇÐÀÚÀÎ Omar Yaghi´Â »çÀ̾𽺿¡ ¹ßÇ¥ÇÑ ³í¹®ÀÇ ±³½Å ÀúÀÚÀÌ´Ù. ÀÌ ³í¹®ÀÇ Á¦¸ñÀº ¡°¹°¿¡¼­ Ã˸Ÿ¦ ÀÌ¿ëÇÑ ÀÌ»êȭź¼Ò ȯ¿øÀ» À§ÇÑ ÄÚ¹ßÆ® Æ÷¸£ÇǸ°(cobalt porphyrins)À¸·Î ±¸¼ºµÈ COFs(Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water)¡±ÀÌ´Ù. ÁÖÀúÀÚ´Â Song Lin, Christian Diercks ¹× Yue-Biao Zhang µîÀ̸ç, ´Ù¸¥ °øµ¿ ÀúÀڷδ Nikolay Kornienko, Eva Nichols, Yingbo Zhao, Aubrey Paris, Dohyung Kim ¹× Peidong Yang µîÀÌ Âü¿©Çß´Ù.

Chang°ú YaghiÀº ¸ðµÎ UC(University of California) ¹öŬ¸®¿¡ ÀçÁ÷ÇÏ°í ÀÖ´Ù. ¶Ç ChangÀº ÇÏ¿öµå ÈÞ½º ÀÇÇÐ ¿¬±¸¼Ò(HHMI; Howard Hughes Medical Institute) Á¶»ç°üÀÌ´Ù. Yaghi´Â UC ¹öŬ¸® Kavli-ENSI(Kavli Energy NanoScience Institute) °øµ¿ Ã¥ÀÓÀÚ·Î ¿ªÀÓÇÏ°í ÀÖ´Ù.

´ë±â¿Í Áö±¸ ±âÈÄ º¯È­¿¡ ¿µÇâÀ» ³¢Ä¡´Â ÀÌ»êȭź¼ÒÀÇ ¾Ç¸íÀº ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ´Â È­Çй°ÁúÀÇ Á¦Á¶¸¦ À§ÇÏ¿© dzºÎÇÏ°í, Àç»ý °¡´ÉÇϸç, ºñµ¶¼ºÀÏ »Ó ¾Æ´Ï¶ó ºñÀÎÈ­¼ºÀΠź¼Ò ÀÚ¿øÀ¸·ÎÀÇ °¡Ä¡·Î ÀÎÇÏ¿© ¹«»öÇØÁö°í ÀÖ´Ù. ´ë±â Áß ÀÌ»êȭź¼Ò ¹èÃâ °¨ÃàÀ» ¿°µÎ¿¡ µÎ°í, 2005³â Yaghi¿Í ¹Ì±¹ ¹Ì½Ã°£ ´ëÇÐ ¼Ò¼ÓÀÇ ±×ÀÇ ¿¬±¸ ±×·ìÀº ¹è¿¬°¡½º·ÎºÎÅÍ ÀÌ»êȭź¼Ò¸¦ °Ý¸®ÇÏ´Â ¼ö´ÜÀ¸·Î COFs¸¦ óÀ½À¸·Î °í¾È ¹× °³¹ßÇß´Ù.

COF´Â ÀÌ·ÊÀûÀ¸·Î Å« ³»ºÎ Ç¥¸éÀûÀÇ Æ¯Â¡À» °¡Áö´Â ´Ü´ÜÇÏ°Ô Á¢Çô ÀÖ´Â ÄÞÆÑÆ®ÇÑ ÇÁ·¹ÀÓ¿öÅ©·Î ÀÌ·ç¾îÁø ´Ù°ø¼º 3Â÷¿ø °áÁ¤ÀÌ´Ù. °¢¼³ÅÁ Å©±âÀÇ COF´Â Ã౸ °æ±âÀå Å©±âÀÇ ´ã¿äó·³ ÆîÃÄÁö°í Á¢ÇôÁú ¼ö ÀÖ´Â ±¸Á¶¸¦ °¡Áø´Ù. COFÀÇ ¾î¸¶¾î¸¶ÇÑ ³»ºÎ Ç¥¸éÀûÀÇ ½ºÆÝÁö¿Í °°Àº Ư¼ºÀº ½Ã½ºÅÛÀÌ ÀÌ»êȭź¼Ò¿Í °°Àº ´Ù·®ÀÇ ¸ñÇ¥ ºÐÀÚ¸¦ Èí¼ö ¹× ÀúÀåÇÒ ¼ö ÀÖ°Ô ÇØÁØ´Ù.

ÃÖ±Ù, º¹ÀâÇÏ°Ô ¾ôÇô ÀÖ´Â È­ÇÐ(reticular chemistry)À̶ó°í ºÒ¸®´Â Yaghi°¡ °³¹ßÇÑ ´Ù¸¥ ±â¼úÀÌ °­·ÂÇÑ È­ÇÐ °áÇÕ¿¡ ÀÇÇØ ¼­·Î¼­·Î ÁöÁöµÇ´Â ±×¹°¸Á°ú °°Àº ±¸Á¶¸¦ ¿¬°áÇÏ´Â ºÐÀÚ ½Ã½ºÅÛÀÌ Á߽ɿ¡ ÄÚ¹ßÆ® ¿øÀÚ¸¦ °¡Áö°í ÀÖ´Â °í¸® ÇüÅÂÀÇ À¯±â ºÐÀÚÀÎ Æ÷¸£ÇǸ°(porphyrin) Ã˸Ÿ¦ COFs ºÐÀÚ ÁßÃß¿¡ ³¢¿ö ³ÖÀ» ¼ö ÀÖ°Ô ÇØÁÖ¾ú´Ù. Æ÷¸£ÇǸ°Àº ÀÌ»êȭź¼Ò¿¡ ÀüÀÚ¸¦ À̵¿½ÃÅ°´Âµ¥ ƯÈ÷ ´É¼÷ÇÑ Àü±â ÀüµµÃ¼ÀÌ´Ù.

COFsÀÇ Áß¿äÇÑ Æ¯Â¡Àº COFÀÇ ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸¼ºÇÏ´Â ºôµùºí·ÏÀ» Á¶Á¤ÇÔÀ¸·Î½á ¸¶À½´ë·Î ºÐÀÚ ¼öÁØÀÇ Á¦¾î¸¦ °¡´ÉÇϵµ·Ï È­ÇÐÀûÀ¸·Î È°¼º À§Ä¡¸¦ º¯°æÇÒ ¼ö ÀÖ´Â ´É·ÂÀ̶ó°í Yaghi´Â ¹àÇû´Ù. ÀÌ°ÍÀº ÁÖ¿ä ¹®Á¦°¡ ³²¾Æ ÀÖ´Â ÇÕ¸®ÀûÀÎ µðÀÚÀÎ ¼öÁØÀ» °¡Áö°í ÀÖ´Â Ã˸ŠƯ¼ºÀ» Á¶ÀýÇÏ´Â ´Ù¸¥ °íü »óÅ Ã˸ſ¡ ºñ±³ÇÏ¿© »ó´çÇÑ ÀåÁ¡À» °¡Áö°í ÀÖ´Ù. Æ÷¸£ÇǸ° COFs°¡ ¹°¿¡¼­ ¾ÈÁ¤ÀûÀ̱⠶§¹®¿¡, Æ÷¸£ÇǸ° COFs´Â ¹è¿¬°¡½º ¹è±â°¡½º¿Í ÀÛµ¿ÇÏ´Â µ¥ Çʼö¿ä°ÇÀÎ °æÀïÀûÀÎ ¹° ȯ¿ø ¹ÝÀÀ¿¡ ´ëÇÏ¿© ³ôÀº ¼±ÅüºÀ» °¡Áö°í ¼ö¿ë¼º ÀüÇØÁú¿¡¼­ ¿î¿µµÉ ¼ö ÀÖ´Ù.

¼º´É Å×½ºÆ®¿¡¼­, Æ÷¸£ÇǸ° COFs´Â ÀÌ·ÊÀûÀ¸·Î ³ôÀº Ã˸ŠȰ¼ºÀ» ³ªÅ¸³Â´Ù. Ã˸Ŵ 90%ÀÇ ³ôÀº Æз¯µ¥ÀÌ È¿À²À» ³ªÅ¸³ÂÀ¸¸ç, °úÀüÀ§ –0.55 V ¹× pH 7¿¡¼­ Ãʱâ ȸÀü ÁÖÆļö 9400 hours−1À» °¡Áö´Â ÇÑ °³ÀÇ Æ÷¸£ÇǸ° COF°¡ ¸ÅÃÊ 290,000°³ÀÇ ÀÌ»êȭź¼Ò¸¦ ÀÏ»êȭź¼Ò·Î ȯ¿øÇÒ ¼ö ÀÖ´Â °ÍÀ» ÀǹÌÇÏ´Â 290,000ÀÇ È¸Àü¼ö(turnover number)¸¦ º¸¿©ÁÖ¾ú´Ù.

ÀÌ´Â ºÐÀÚ¼º ÄÚ¹ßÆ® Æ÷¸£ÇǸ° Ã˸ÅÀÇ Ã˸ŠȰ¼ºº¸´Ù 60¹è Áõ°¡ÇÑ Ã˸ŠȰ¼º°ú Æ÷¸£ÇǸ° COFs°¡ ÀÌ»êȭź¼Ò ȯ¿ø ½Ã¾àÀ¸·Î ¾Ë·ÁÁø ¸ðµç Ã˸ŠÁß °¡Àå ºü¸£°í È¿À²ÀûÀÎ Ã˸Ŷó´Â °ÍÀ» ¾Ï½ÃÇÏ´Â °ÍÀÌ´Ù. °Ô´Ù°¡, ¿¬±¸ÆÀÀº Æ÷¸£ÇǸ° COFÀÇ ¼º´ÉÀ» Ãß°¡ÀûÀ¸·Î °³¼±ÇÒ ¿©Áö°¡ ÀÖÀ» °ÍÀ¸·Î ¹Ï°í ÀÖ´Ù. X-¼± ÈíÂø ÀÚ·á´Â Ã˸ŠÄÚ¹ßÆ® Áß½ÉÀÇ Àü±âÀû ±¸Á¶¿¡ ´ëÇÑ COF ȯ°æÀÇ ¿µÇâÀ» ±Ô¸íÇß´Ù.

¿¬±¸ÁøÀº ÇöÀç Àü±âÈ°¼º ÄÚ¹ßÆ® Áß½ÉÀÇ ¼ö¸¦ Áõ°¡½ÃÅ°°í, º¸´Ù ´õ ³·Àº °úÀüÀ§¸¦ ´Þ¼ºÇÏ´Â ÇÑÆí, ¾ç¼ºÀÚ È¯¿ø(proton reduction)¿¡ ´ëÇÑ ÀÌ»êȭź¼Ò ȯ¿ø¿¡ ´ëÇÑ ³ôÀº È°¼º°ú ¼±ÅüºÀ» À¯ÁöÇÏ´Â ¹æ¾ÈÀ» ã°í ÀÖ´Ù. ´õºÒ¾î, ¿¬±¸ÁøÀº COFs¿Í °ü·Ã ÇÁ·¹ÀÓ¿öÅ©¸¦ ÀÌ¿ëÇÏ¿© ¸¸µé¾îÁú ¼ö ÀÖ´Â °íºÎ°¡°¡Ä¡ÀÇ Åº¼Ò Á¦Ç°ÀÇ À¯ÇüÀ» È®´ëÇÏ´Â ¹æ¾ÈÀ» ¿¬±¸ÇÒ ¿¹Á¤ÀÌ´Ù.

±×¸²1> À½±Ø¿¡ »ðÀÔµÈ Æ÷¸£ÇǸ° COFs°¡ Àç»ý ¿¬·á¿Í ´Ù¸¥ °íºÎ°¡°¡Ä¡ È­Çй°ÁúÀ» ¸¸µé±â À§ÇÏ¿© ÀÌ»êȭź¼Ò¸¦ ÀÏ»êȭź¼Ò¿Í »ê¼Ò·Î ºÐ¸®ÇÏ´Â µ¥ ¾î¶»°Ô »ç¿ëµÉ ¼ö ÀÖ´ÂÁö¸¦ º¸¿©ÁÖ´Â °³³ä ¸ðµ¨


[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 9¿ù 2ÀÏ]
 
[¿ø¹®º¸±â]
 
Soaking up carbon dioxide and turning it into valuable products

A molecular system that holds great promise for the capture and storage of carbon dioxide has been modified so that it now also holds great promise as a catalyst for converting captured carbon dioxide into valuable chemical products. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have incorporated molecules of carbon dioxide reduction catalysts into the sponge-like crystals of covalent organic frameworks (COFs). This creates a molecular system that not only absorbs carbon dioxide, but also selectively reduces it to carbon monoxide, which serves as a primary building block for a wide range of chemical products including fuels, pharmaceuticals and plastics.

"There have been many attempts to develop homogeneous or heterogeneous catalysts for carbon dioxide, but the beauty of using COFs is that we can mix-and-match the best of both worlds, meaning we have molecular control by choice of catalysts plus the robust crystalline nature of the COF," says Christopher Chang, a chemist with Berkeley Lab's Chemical Sciences Division, and a co-leader of this study. "To date, such porous materials have mainly been used for carbon capture and separation, but in showing they can also be used for carbon dioxide catalysis, our results open up a huge range of potential applications in catalysis and energy."

Chang and Omar Yaghi, a chemist with Berkeley Lab's Materials Sciences Division who invented COFs, are the corresponding authors of a paper in Science that describes this research in detail. The paper is titled "Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water". Lead authors are Song Lin, Christian Diercks and Yue-Biao Zhang. Other co-authors are Nikolay Kornienko, Eva Nichols, Yingbo Zhao, Aubrey Paris, Dohyung Kim and Peidong Yang.

Chang and Yaghi both hold appointments with the University of California (UC) Berkeley. Chang is also a Howard Hughes Medical Institute (HHMI) investigator. Yaghi is co-director of the Kavli Energy NanoScience Institute (Kavli-ENSI) at UC Berkeley.

The notoriety of carbon dioxide for its impact on the atmosphere and global climate change has overshadowed its value as an abundant, renewable, nontoxic and nonflammable source of carbon for the manufacturing of widely used chemical products. With the reduction of atmospheric carbon dioxide emissions in mind, Yaghi and his research group at the University of Michigan in 2005 designed and developed the first COFs as a means of separating carbon dioxide from flue gases. A COF is a porous three-dimensional crystal consisting of a tightly folded, compact framework that features an extraordinarily large internal surface area - a COF the size of a sugar cube were it to be opened and unfolded would blanket a football field. The sponge-like quality of a COF's vast internal surface area enables the system to absorb and store enormous quantities of targeted molecules, such as carbon dioxide.

Now, through another technique developed by Yaghi, called "reticular chemistry," which enables molecular systems to be "stitched" into netlike structures that are held together by strong chemical bonds, the Berkeley Lab researchers were able to embed the molecular backbone of COFs with a porphyrin catalyst, a ring-shaped organic molecule with a cobalt atom at its core. Porphyrins are electrical conductors that are especially proficient at transporting electrons to carbon dioxide.

"A key feature of COFs is the ability to modify chemically active sites at will with molecular-level control by tuning the building blocks constituting a COF's framework," Yaghi says. "This affords a significant advantage over other solid-state catalysts where tuning the catalytic properties with that level of rational design remains a major challenge. Because the porphyrin COFs are stable in water, they can operate in aqueous electrolyte with high selectivity over competing water reduction reactions, an essential requirement for working with flue gas emissions."

In performance tests, the porphyrin COFs displayed exceptionally high catalytic activity - a turnover number up to 290,000, meaning one porphyrin COF can reduce 290,000 molecules of carbon dioxide to carbon monoxide every second. This represents a 60-fold increase over the catalytic activity of molecular cobalt porphyrin catalyst and places porphyrin COFs among the fastest and most efficient catalysts of all known carbon dioxide reduction agents. Furthermore, the research team believes there's plenty of room for further improving porphyrin COF performances.

"We're now seeking to increase the number of electroactive cobalt centers and achieve lower over-potentials while maintaining high activity and selectivity for carbon dioxide reduction over proton reduction," Chang says. "In addition we are working towards expanding the types of value-added carbon products that can be made using COFs and related frameworks."
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [µ§¸¶Å©] ¿¡³ÊÁö È¿À² ¿Ã¸®¸é ¼¼±Ý °øÁ¦
´ÙÀ½±Û [ÀϺ»] ƯÀÌÀû À¯ºÐÇØ´É·ÂÀ» ³ªÅ¸³»´Â °ø»ý ¹Ì»ý¹°Á¦ µ¥¸ð±â Á¦ÀÛ
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.