Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[ºÏ¾Æ¸Þ¸®Ä«] [2015] [¹Ì±¹] ¹ÝµµÃ¼ ³ª³ë¿ÍÀ̾î¿Í ¹ÚÅ׸®¾ÆÀÇ °áÇÕÀ» ÅëÇÑ ¾×ü ¿¬·á »ý»ê
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-09-14 Á¶È¸¼ö 507
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ¹ÝµµÃ¼ ³ª³ë¿ÍÀ̾î¿Í ¹ÚÅ׸®¾ÆÀÇ °áÇÕÀ» ÅëÇÑ ¾×ü ¿¬·á »ý»ê
 
Àϱ¤¸¸À» ÀÌ¿ëÇÏ¿© ÈÖ¹ßÀ¯¿Í õ¿¬°¡½º¸¦ ¸¸µé ¼ö ÀÖ´Â Àΰø ½Ä¹°À» »ý¼ºÇÑ´Ù°í »ó»óÇغ¸ÀÚ. ±×¸®°í ÀÌ·¯ÇÑ ¿¬·á°¡ ´ë±â·Î ¿Â½Ç°¡½º¸¦ ¹èÃâÇÏÁö ¾ÊÀ¸¸é¼­ ÀÚµ¿Â÷¸¦ ¿îÇàÇϰųª °¡Á¤¿¡ ³­¹æÀ» Á¦°øÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ´Â ¿¬·á·Î È°¿ëµÉ ¼ö ÀÖ´Ù¸é Àΰ£¿¡°Ô Á÷¸éÇÑ ¿¡³ÊÁö ¹®Á¦¿Í ȯ°æ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ Å« ±â¿©¸¦ ÇÒ °ÍÀÌ´Ù. ¹Ì±¹ Ķ¸®Æ÷´Ï¾Æ ´ëÇÐ ¹öŬ¸® Ä·ÆÛ½º(University of California, Berkeley) ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀº ³ª³ë°úÇаú »ý¹°ÇÐÀ» °áÇÕÇÔÀ¸·Î½á ¾×ü ¿¬·á¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ¹æ¾ÈÀ» °í¾ÈÇÏ´Â µ¥ Å« ¼º°ú¸¦ ´Þ¼ºÇß´Ù.

µ¿ ´ëÇÐ È­Çаú ±³¼öÀ̸ç Ä«ºí¸® ¿¡³ÊÁö ³ª³ë°úÇÐ ¿¬±¸¼Ò(Kavli Energy NanoSciences Institute) °øµ¿ Ã¥ÀÓÀÚÀÎ Peidong YangÀº ¹ÝµµÃ¼ ³ª³ë¿ÍÀ̾î(semiconducting nanowires)¿Í ¹ÚÅ׸®¾Æ(bacteria)ÀÇ Á¶ÇÕÀ» ÀÌ¿ëÇÏ¿© õ¿¬°¡½ºÀÇ ÁÖ¿ä ±¸¼º ¿ø¼ÒÀÎ ¸Þź(methane)À» »ý¼ºÇÏ´Â Àΰø ÀÙ(artificial leaf)À» »ý¼ºÇß´Ù. °ü·Ã ¿¬±¸´Â ¹Ì±¹ ±¹¸³°úÇпøȸº¸(PNAS; Proceedings of the National Academy of Sciences) ¿Â¶óÀÎ ÆÇ¿¡ "žçÀ» È­ÇÐÀûÀ¸·Î ÀüȯÇÏ´Â ÇÏÀ̺긮µå »ý¹° ¹«±âÈ­ÇÐÀû Á¢±Ù(Hybrid bioinorganic approach to solar-to-chemical conversion)¡°À̶ó´Â Á¦¸ñÀ¸·Î ¹ßÇ¥µÆ´Ù. ÀÌ ¿¬±¸´Â Yang°ú µ¿·á ¿¬±¸ÁøÀÌ ÃÖ±Ù¿¡ °í¾ÈÇß´ø ´Ù¾çÇÑ »ýÈ­ÇÐÀû ºôµù ºí·Ï°ú ÈÖ¹ßÀ¯ÀÇ ±¸¼º ¿ø¼ÒÀÎ ºÎź¿ÃÀ» »ý»êÇÏ´Â À¯»çÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛ À§¿¡ ±¸ÃàµÆ´Ù.

ÀÌ ¿¬±¸´Â Àϱ¤, ÀÌ»êȭź¼Ò ¹× ¹° µîÀ» ´çÀ¸·Î Àüȯ½ÃÅ°±â À§ÇÑ ½Ä¹°ÀÇ ´É·ÂÀ» ±â¹ÝÀ¸·Î ÇÏ´Â ÅÂ¾ç ¹ßÀüÀÇ À¯ÇüÀÎ ÇÕ¼º ±¤ÇÕ¼º(synthetic photosynthesis)¿¡ ´ëÇÑ Áß¿äÇÑ °³¼±ÀÌ´Ù. ±×·¯³ª ÇÕ¼º ±¤ÇÕ¼ºÀº ´çÀ» »ý»êÇÏ´Â ´ë½Å ¸î ´Þ ¶Ç´Â ¸î ³â µ¿¾È ÀúÀåµÉ ¼ö ÀÖÀ¸¸ç, ±âÁ¸ÀÇ ¿¡³ÊÁö »çȸ±â¹Ý½Ã¼³À» ÅëÇÏ¿© ºÐ¹èµÉ ¼ö ÀÖ´Â ¾×ü ¿¬·á(liquid fuels)¸¦ »ý»êÇÏ´Â ¹æ¾ÈÀ» ¸ð»öÇÏ°í ÀÖ´Ù.

ÇÕ¼º ±¤ÇÕ¼ºÀÇ ¹Ì·¡¿Í ±×ÀÇ ÃÖ±Ù Çõ½Å¿¡ ´ëÇÑ ³íÀǸ¦ ¼öÇàÇÑ È¸ÀÇ¿¡¼­, YangÀº ¿¬±¸ÆÀÀÌ °³¹ßÇÑ ÇÏÀ̺긮µå ¹«±â/»ý¹°ÇÐÀû ½Ã½ºÅÛÀÌ °úÇÐÀڵ鿡°Ô ±¤ÇÕ¼ºÀ» ¿¬±¸ÇÏ°í, ±¤ÇÕ¼ºÀÇ ºñ¹ÐÀ» ¹è¿ì´Â µ¥ »õ·Î¿î µµ±¸¸¦ Á¦°øÇÒ °ÍÀ̶ó°í ¹àÇû´Ù.

°úÇÐÀÚµéÀÌ Àϱ¤À¸·ÎºÎÅÍ È¿À²ÀûÀ¸·Î ÀüÀÚ¸¦ »ý¼ºÇÏ´Â °Í¿¡´Â ¼÷·ÃµÇ¾î ÀÖÁö¸¸, È­ÇÐÀû ÇÕ¼ºÀÌ Ç×»ó °³¹ßµÈ ½Ã½ºÅÛÀ» Á¦ÇÑÇÏ°í ÀÖ´Ù. ÀÌ ½ÇÇèÀÇ ÇÑ °¡Áö ¸ñÀûÀº ¿¬±¸ÁøÀÌ ¹ÝµµÃ¼ ±â¼ú°ú ¹ÚÅ׸®¾Æ¼º Ã˸Ÿ¦ ÅëÇÕÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÖ´Â °ÍÀÌ´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ½ÇÁ¦ÀûÀÎ ÇÕ¼º ±¤ÇÕ¼º ½Ã½ºÅÛÀ» ÀÌÇØÇÏ°í ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô ¸¸µé¾î Áشٰí YangÀº ¹àÇû´Ù.

ÀÚ¿¬ÀûÀÎ ±¤ÇÕ¼ºÀº ÅÂ¾ç ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© ÀÌ»êȭź¼Ò¿Í ¹°À» »îÀ» ÁöÅÊÇϱâ À§ÇÏ¿© °íºÎ°¡°¡Ä¡ÀÇ È­ÇÐÁ¦Ç°À¸·Î Àüȯ½ÃŲ´Ù. ¿¬±¸ÁøÀº »ýü¿¡ ÀûÇÕÇÑ ¹«±â Ã˸Ÿ¦ ÀÌ¿ëÇÏ¿© ¹° ºÐÇطκÎÅÍ ¼ö¼Ò »ý»êÀ» ÃßÁøÇϱâ À§ÇÏ¿© Áö¼Ó °¡´ÉÇÑ Àü±â ¶Ç´Â žç ÁÖÀÔÀ» ÅëÇØ ÀÌ»êȭź¼Ò¿Í ¹°À» È­Çй°Áú·Î ÀüȯÇÏ´Â ÇÏÀ̺긮µå »ý¹° ¹«±âÈ­ÇÐÀû Á¢±ÙÀ» Á¦½ÃÇß´Ù. ÀÌÈÄ ¼ö¼Ò´Â ÀÌ»êȭź¼Ò¸¦ °íºÎ°¡°¡Ä¡ÀÇ È­ÇÐÁ¦Ç°ÀÎ ¸ÞźÀ¸·Î ÀüȯÇϱâ À§ÇÑ È¯¿ø ´ç·®(reducing equivalent) °ø±Þ¿øÀ¸·Î »ì¾Æ ÀÖ´Â ¼¼Æ÷¿¡ ÀÇÇØ »ç¿ëµÈ´Ù.

ÀÌ»êȭź¼Ò °íÁ¤À» À§ÇÑ »ý¹° Ã˸ŷΠMethanosarcina barkeri¿Í »ýü¿¡ ÀûÇÕÇÑ ¼ö¼Ò ¹ß»ý ¹ÝÀÀ(HER; hydrogen evolution reaction) Àü±âÃ˸ŷΠ¹é±Ý ¶Ç´Â Áö±¸»ó¿¡ dzºÎÇÑ Ä¡È¯Ã¼ÀÎ ¥á-NiS¸¦ ÀÌ¿ëÇÏ¿©, ¿¬±¸ÁøÀº ¡Ã7 d¿¡ ´ëÇÏ¿© 86%ÀÇ Àüü Æз¯µ¥ÀÌ È¿À²·Î ÀÌ»êȭź¼Ò¸¦ ¸ÞźÀ¸·Î Àüȯ½Ãų ¼ö ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇß´Ù.

ÀÎÈ­ Àεã(indium phosphide) ±¤À½±Ø°ú ÀÌ»êȭƼź ±¤¾ç±ØÀÇ µµÀÔÀº ¹°°ú ÀÌ»êȭź¼Ò·ÎºÎÅÍ ¸ÞźÀ» »ý¼ºÇϱâ À§ÇÑ ¿ÏÀüÇÑ Å¾ç ÃßÁø ½Ã½ºÅÛÀ» Á¦°øÇÒ ¼ö ÀÖ¾ú´Ù.

È­¼® ¿¬·á¸¦ ¿¬¼Ò½ÃÅ°´Â °ÍÀº ÀÚ¿¬ÀûÀÎ ±¤ÇÕ¼ºÀÌ ÀÌ»êȭź¼Ò¸¦ ´ë±â·Î ¹èÃâÇÏ´Â °Íº¸´Ù ÈξÀ ´õ ºü¸£°Ô ´ë±â·Î ÀÌ»êȭź¼Ò¸¦ Ãß°¡ÇÒ °ÍÀÌ´Ù. Àΰ£ÀÌ ´ë±â·Î ¿¬¼Ò½ÃÄÑ ¹èÃâ½ÃÅ°´Â ¸ðµç ÀÌ»êȭź¼Ò¸¦ ²ø¾î´ç°Ü¼­ ¿¬·á·Î Àüȯ½Ãų ¼ö ÀÖ´Â ½Ã½ºÅÛÀº »ç½Ç»ó ź¼Ò Áß¼ºÀ̶ó°í ȸÀÇ¿¡ Âü¿©ÇÑ Thomas Moore´Â ¹àÇû´Ù. Moore´Â ¾Ö¸®Á¶³ª ±¹¸³´ëÇÐ(Arizona State University) È­ÇÐ ¹× »ýÈ­Çаú ±³¼ö·Î °ú°Å ¹ÙÀÌ¿À¿¡³ÊÁö ¹× ±¤ÇÕ¼º ¿¬±¸¼Ò(Center for Bioenergy & Photosynthesis)ÀÇ Ã¥ÀÓÀÚ¿´´Ù.

±Ã±ØÀûÀ¸·Î, ¿¬±¸ÁøÀº ÀÚ¿¬ÀÇ º¹Á¦Ç° ´ë½Å º¸´Ù ´õ °ß°íÇÏ°í È¿À²ÀûÀÎ ¿ÏÀüÇÑ ÇÕ¼º ½Ã½ºÅÛÀ» »ý¼ºÇϱ⸦ Èñ¸ÁÇÏ°í ÀÖ´Ù. ÀÌ°ÍÀ» ¼öÇàÇϱâ À§ÇÏ¿©, ¿¬±¸ÁøÀº ¹°°ú ÀÌ»êȭź¼Ò¸¦ ½Ç¿Â¿¡¼­ ´çÀ¸·Î Àüȯ½ÃÅ°´Â Ã˸ſ¡ ´ëÇÑ ÃÖÀûÀÇ µðÀÚÀÎÀ» ¿¬±¸ÇÏ´Â ¸ðµ¨ ½Ã½ºÅÛÀ» È®º¸ÇÒ ÇÊ¿ä°¡ ÀÖ´Ù.

ÀÌ°ÍÀº ÀÚ¿¬À» Á÷Á¢ ¶Ç´Â ¹®ÇåÇÐÀûÀ¸·Î ¸ð¹æÇÏ´Â °ÍÀº ¾Æ´Ï¶ó°í ij³ª´Ù Åä·ÐÅä ´ëÇÐ(University of Toronto) ÀÀ¿ë°úÇÐ ¹× °øÇкΠ¼Ò¼ÓÀÎ Ted Sargent´Â ¹àÇû´Ù. ±× ´ë½Å ÀÚ¿¬ÀÇ ÁöħÀ» ÇнÀÇÏ°í, ÀÚ¿¬ÀÇ ¹ýÄ¢ÀÌ ¾î¶»°Ô È¿À²ÀûÀÌ°í ¼±ÅÃÀûÀÎ Ã˸Ÿ¦ ¸¸µå´ÂÁö ÀÌÈÄ ÀÌ·¯ÇÑ °ßÇظ¦ ÀÌ¿ëÇÏ¿© º¸´Ù ´õ °øÇÐÀûÀ¸·Î ¿ì¼öÇÑ ÇØ°á¹æ¾ÈÀ» »ý¼ºÇÏ´Â °ÍÀ̶ó°í Sargent´Â ¹àÇû´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 9¿ù 14ÀÏ]

[¿ø¹®º¸±â]

By combining semiconducting nanowires and bacteria to produce liquid fuel

Imagine creating artificial plants that make gasoline and natural gas using only sunlight. And imagine using those fuels to heat our homes or run our cars without adding any greenhouse gases to the atmosphere. By combining nanoscience and biology, researchers led by scientists at University of California, Berkeley, have taken a big step in that direction. 

Peidong Yang, a professor of chemistry at Berkeley and co-director of the school's Kavli Energy NanoSciences Institute, leads a team that has created an artificial leaf that produces methane, the primary component of natural gas, using a combination of semiconducting nanowires and bacteria. The research, detailed in the online edition of Proceedings of the National Academy of Sciences in August ("Hybrid bioinorganic approach to solar-to-chemical conversion"), builds on a similar hybrid system, also recently devised by Yang and his colleagues, that yielded butanol, a component in gasoline, and a variety of biochemical building blocks. 

The research is a major advance toward synthetic photosynthesis, a type of solar power based on the ability of plants to transform sunlight, carbon dioxide and water into sugars. Instead of sugars, however, synthetic photosynthesis seeks to produce liquid fuels that can be stored for months or years and distributed through existing energy infrastructure. 

In a roundtable discussion on his recent breakthroughs and the future of synthetic photosynthesis, Yang said his hybrid inorganic/biological systems give researchers new tools to study photosynthesis -- and learn its secrets. 

"We're good at generating electrons from light efficiently, but chemical synthesis always limited our systems in the past. One purpose of this experiment was to show we could integrate bacterial catalysts with semiconductor technology. This lets us understand and optimize a truly synthetic photosynthesis system," he told The Kavli Foundation. 

The stakes are high. 

"Burning fossil fuels is putting carbon dioxide into the atmosphere much faster than natural photosynthesis can take it out. A system that pulls every carbon that we burn out of the air and converts it into fuel is truly carbon neutral," added Thomas Moore, who also participated in the roundtable. Moore is a professor of chemistry and biochemistry at Arizona State University, where he previously headed the Center for Bioenergy & Photosynthesis. 

Ultimately, researchers hope to create an entirely synthetic system that is more robust and efficient than its natural counterpart. To do that, they need model systems to study nature's best designs, especially the catalysts that convert water and carbon dioxide into sugars at room temperatures. 

"This is not about mimicking nature directly or literally," said Ted Sargent, the vice-dean of research for the Faculty of Applied Science and Engineering at University of Toronto. He was the third participant in the roundtable. 

"Instead, it is about learning nature's guidelines, its rules on how to make a compellingly efficient and selective catalyst, and then using these insights to create better-engineered solutions." 

"Today, nature has us beat," Sargent added. "But this is also exciting, because nature proves it's possible." 

Read the full conversation with Yang, Sargent and Moore on The Kavli Foundation website. 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀϺ»] À¯ÁöÀÇ ³ôÀº »ý»ê À§ÇØ ÇØÃÊÀÇ ÁöÁú·® ¹× Á¶¼ºÀ» º¯È­½ÃÅ°´Â ±â¼ú °³¹ß
´ÙÀ½±Û [º§±â¿¡] ½ÅÀç»ý¿¡³ÊÁö Á¤Ã¥
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.