Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ±¹°¡º° ÇöȲ
  main_center °Ô½ÃÆÇÀº ¾ÆÁ÷ »ý¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù.  
[ºÏ¾Æ¸Þ¸®Ä«] [2015] [¹Ì±¹] ¼ÒÇü ź¼ÒÆ÷ȹ ¸ðÅ͸¦ ÀÌ¿ëÇÑ Çؾç ÀÌ»êȭź¼Ò ¿À¿°ÀÇ Á¤È­
À̸§ °ü¸®ÀÚ ÀÛ¼ºÀÏ 2015-09-30 Á¶È¸¼ö 512
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ¼ÒÇü ź¼ÒÆ÷ȹ ¸ðÅ͸¦ ÀÌ¿ëÇÑ Çؾç ÀÌ»êȭź¼Ò ¿À¿°ÀÇ Á¤È­
 
¾ðÁ¨°¡´Â Àΰ£ ¸Ó¸®Ä«¶ôÀÇ µÎ²²º¸´Ù ÈξÀ ÀÛÀº ±â°è°¡ Çؾ翡¼­ ÀÌ»êȭź¼Ò ¿À¿°À» Á¤È­Çϴµ¥ »ç¿ëµÉ °ÍÀ¸·Î ¿¹»óµÈ´Ù. Ķ¸®Æ÷´Ï¾Æ´ëÇÐ(University of California, San Diego) ³ª³ë°øÇÐÀÚµéÀº, ¹° ¼Ó¿¡¼­ ºü¸£°Ô ÀÌ»êȭź¼Ò¸¦ Æ÷ȹÇÏ°í ÀÌ°ÍÀ» À¯¿ëÇÑ °íü ÇüÅ·Πº¯È¯½Ãų ¼ö ÀÖ´Â È¿¼Ò·Î ±â´ÉÈ­µÈ ¸¶ÀÌÅ©·Î¸ðÅÍ(enzyme-functionalized micromotors)¸¦ °³¹ßÇÏ¿´´Ù.

°³³äÁõ¸íÀû ¼º°ÝÀÇ º» ¿¬±¸¿¡¼­´Â ´ë±â Áß ÁÖ¿äÇÑ ¿Â½Ç°¡½ºÀÎ ÀÌ»êȭź¼ÒÀÇ ÃàÀûÀ» ¿ÏÈ­½Ãų ¼ö ÀÖ´Â À¯¸ÁÇÑ ¹æ¹ýÀ» ¼Ò°³ÇÏ°í ÀÖ´Ù. Àú¸íÇÑ ³ª³ë°øÇÐ ±³¼öÀÎ Joseph WangÀÌ À̲ô´Â º» ¿¬±¸°á°ú´Â À̹ø ´Þ Angewandte Chemie ("Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers")Áö¿¡ °ÔÀçµÇ¾ú´Ù.

¿¬±¸ÆÀÀº Áö±¸ ¿Â³­È­ ¹× ÇؾçÀÇ »ê¼ºÈ­¿¡ ´ëÀûÇϴµ¥ ÀÌ·± ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ »ç¿ë°¡´É¼º¿¡ ¸Å¿ì °í¹«µÇ¾î ÀÖ´Ù°í, º» ¿¬±¸ÀÇ °øµ¿ÀúÀÚÀÌÀÚ Wang ±³¼öÀÇ ¿¬±¸ÆÀ¿¡¼­ ¹Ú»çÈÄ °úÇÐÀÚ·Î ±Ù¹«ÇÏ°í ÀÖ´Â Virendra V. Singh´Â ¹àÇû´Ù.

½ÇÇè¿¡¼­, ³ª³ë°øÇÐÀÚµéÀº ¸¶ÀÌÅ©·Î¸ðÅÍ°¡ ÀÌ»êȭź¼Ò·Î Æ÷È­µÈ ¼ö¿ë¾×¿¡¼­ ºü¸£°Ô ÀÌ»êȭź¼Ò¸¦ Á¦°ÅÇÑ´Ù´Â »ç½ÇÀ» º¸¿©ÁÖ¾ú´Ù. 5ºÐ ³»¿¡, ÀÌ ¸¶ÀÌÅ©·Î¸ðÅÍ´Â Å»À̿¼ö(deionized water) ¿ë¾×¿¡¼­ ÀÌ»êȭź¼Ò¸¦ 90% Á¦°ÅÇϴµ¥ ¼º°øÇÏ¿´´Ù. ¸¶ÀÌÅ©·Î¸ðÅÍ´Â ¹Ù´å¹°¿¡¼­ÀÇ À¯»çÇÏ°í È¿°ú¼ºÀ» ³ªÅ¸³ÂÀ¸¸ç, µ¿ÀÏÇÑ ½Ã°£¿¡ ÀÌ»êȭź¼Ò¸¦ 88% Á¦°ÅÇÏ¿´´Ù.

º» ¿¬±¸ÀÇ °øµ¿ÀúÀÚÀÌÀÚ Wang ±³¼öÀÇ ½ÇÇè½Ç¿¡¼­ Çкλý ¿¬±¸¿øÀ¸·Î ±Ù¹«ÇÏ´Â Kevin KaufmannÀº, ÇâÈÄ ¿¬±¸ÆÀÀº ÀáÀçÀûÀ¸·Î ÀÌ ¸¶ÀÌÅ©·Î¸ðÅ͸¦ Żź¼ÒÈ­ °øÀå(water decarbonation plant)°ú °°Àº ¼öó¸® ½Ã½ºÅÛÀÇ ÀϺηΠȰ¿ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÒ ¼ö ÀÖÀ» °ÍÀ̶ó°í ¹àÇû´Ù.

¸¶ÀÌÅ©·Î¸ðÅÍ´Â ÀÌ»êȭź¼Ò¸¦ ´Þ°¿ ²®Áú, ´Ù¾çÇÑ Çؾç À¯±âüÀÇ ²®Áú ¹× Ä®½· º¸ÃæÁ¦³ª ½Ã¸àÆ®¿¡¼­ ¹ß°ßµÇ´Â °íü ¹Ì³×¶ö ¼ººÐÀΠź»êÄ®½·(calcium carbonate)À¸·Î ºü¸£°Ô ÀüȯÇϱâ À§Çؼ­´Â 6¸¶ÀÌÅ©·Î¹ÌÅÍ ±æÀÌÀÇ Æ©ºê ÇüŸ¦ °¡Á®¾ß ÇÑ´Ù. ¸¶ÀÌÅ©·Î¸ðÅÍ´Â ¿ÜºÎ¿¡ °íºÐÀÚ Ç¥¸éÀ» °¡Áö´Âµ¥ ÀÌ°÷¿¡ ź»ê¹«¼öÈ­È¿¼Ò(carbonic anhydrase)°¡ ºÎÂøµÇ¾î ÀÖ´Ù. ź»ê¹«¼öÈ­È¿¼Ò´Â ÀÌ»êȭź¼Ò¿Í ¹°ÀÌ ¹ÝÀÀÇÏ¿© Áßź»ê¿°(bicarbonate)ÀÌ Çü¼ºµÇ´Â ¹ÝÀÀÀ» °¡¼ÓÈ­ÇÑ´Ù. ¼ö¿ë¾×¿¡ ÷°¡µÈ ¿°È­Ä®½·(calcium chloride)Àº Áßź»ê¿°ÀÌ Åº»êÄ®½·À¸·Î ÀüȯµÇ´Â °ÍÀ» µµ¿ÍÁØ´Ù.

¿ë¾×¿¡¼­ ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ ºü¸£°í ¿¬¼ÓÀûÀÎ ¿òÁ÷ÀÓÀº, ¹° ¼Ó¿¡¼­ ÀÌ»êȭź¼Ò¸¦ Á¦°ÅÇÏ´Â ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ È¿À²¼ºÀ» ±Øµµ·Î Çâ»ó½ÃÄÑÁØ´Ù. ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ ÀÚµ¿È­µÈ ¿òÁ÷ÀÓÀº È¿À²ÀûÀ¸·Î ¿ë¾×ÀÇ È¥ÇÕÀ» À¯¹ßÇÔÀ¸·Î½á ´õ ºü¸¥ ÀÌ»êȭź¼ÒÀÇ ÀüȯÀ» °¡´ÉÇÏ°Ô ÇØ ÁØ´Ù. ¹° ¼ÓÀÇ ¸¶ÀÌÅ©·Î¸ðÅÍ¿¡ µ¿·ÂÀ» °ø±ÞÇϱâ À§ÇØ, ¿¬±¸ÆÀÀº °ú»êÈ­¼ö¼Ò(hydrogen peroxide)¸¦ ÷°¡ÇÏ¿´´Ù. °ú»êÈ­¼ö¼Ò´Â ¸¶ÀÌÅ©·Î¸ðÅÍ ³»ºÎÀÇ ¹é±Ý Ç¥¸é°ú ¹ÝÀÀÇÏ¿© »ê¼Ò ±âü¸¦ ±âÆ÷ ÇüÅ·Π¹ß»ý½ÃÅ°¸ç, ÀÌ°ÍÀÌ ¸¶ÀÌÅ©·Î¸ðÅÍ¿¡ ÃßÁø·ÂÀ» ºÎ¿©ÇÑ´Ù. 2~4%ÀÇ °ú»êÈ­¼ö¼Ò¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ¼ö¿ë¾×¿¡ ¸¶ÀÌÅ©·Î¸ðÅ͸¦ ÅõÀÔÇϸé, ÃÊ´ç 100 ¸¶ÀÌÅ©·Î¹ÌÅÍÀÇ ¼Óµµ¸¦ ³¾ ¼ö ÀÖ´Ù.

±×·¯³ª ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ ¿¬·áÀÎ °ú»êÈ­¼ö¼ÒÀÇ »ç¿ëÀº Ãß°¡ÀûÀΠ÷°¡Á¦¶ó´Â Á¡¿¡¼­ ´ÜÁ¡À̱⵵ ÇÏ´Ù. ¶ÇÇÑ °í°¡ÀÇ ¹é±Ý Àç·á¸¦ ¸¶ÀÌÅ©·Î¸ðÅÍ Á¦Á¶¿¡ »ç¿ëÇÑ´Ù´Â ¹®Á¦Á¡µµ ÀÖ´Ù. ´ÙÀ½ ´Ü°è·Î, °úÇÐÀÚµéÀº ¹°¿¡ ÀÇÇØ ±¸µ¿µÇ´Â ÀÌ»êȭź¼Ò Æ÷ȹ¿ë ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ °³¹ß¿¡ ÁÖ·ÂÇÒ °èȹÀÌ´Ù.

¸¸¾à ¸¶ÀÌÅ©·Î¸ðÅÍ°¡ ÁÖÀ§ ȯ°æÀ» ¿¬·á·Î È°¿ëÇÒ ¼ö ÀÖ°Ô ÇÒ ¼ö ÀÖ´Ù¸é, ÀÌ ¸¶ÀÌÅ©·Î¸ðÅÍ´Â ´õ Àú·ÅÇÏ°í ģȯ°æÀûÀÌ¸ç ´ë±Ô¸ð·Î Á¦Á¶µµ °¡´ÉÇØÁú Àü¸ÁÀÌ´Ù.

±×¸² 1> Æ©ºê ÇüÅÂÀÇ ¸¶ÀÌÅ©·Î¸ðÅÍ°¡ ³ª³ë°øÇÐÀڵ鿡 ÀÇÇØ °³¹ßµÇ¾ú´Ù. ¹° ¼ÓÀ» »ô»ôÀÌ µÚÁö¸ç È¿À²ÀûÀ¸·Î ÀÌ»êȭź¼Ò¸¦ Á¦°ÅÇÒ ¼ö ÀÖ´Ù. ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ Ç¥¸éÀº ź»ê¹«¼öÈ­È¿¼Ò·Î ±â´ÉÈ­µÇ¾î Àֱ⠶§¹®¿¡, ÀÌ»êȭź¼Ò¸¦ ź»êÄ®½·À¸·Î ºü¸£°Ô Àüȯ½ÃÅ°´Â °ÍÀÌ °¡´ÉÇÏ´Ù.

±×¸² 2> ¸¶ÀÌÅ©·Î¸ðÅÍ ±â¹ÝÀÇ ÀÌ»êȭź¼Ò °Ý¸® Ç÷§Æû. (A) EDC/NHS [1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxy succinimide] Ä¿Çøµ°ú ź»ê¹«¼öÈ­È¿¼Ò °íÁ¤È­¸¦ ÅëÇÑ ¸¶ÀÌÅ©·Î¸ðÅÍ Ç¥¸éÀÇ º¯È¯. (B, D) ¸¶ÀÌÅ©·Î¸ðÅÍ ±â¹ÝÀÇ ÀÌ»êȭź¼Ò °Ý¸®´Â Áßź»ê¿°ÀÇ ºü¸¥ ¼öÈ­¸¦ °¡´ÉÇÏ°Ô Çϸç, ¿°È­Ä®½·(CaCl2)À» ÅëÇØ Ä§Àü½Ãų ¼ö ÀÖ´Ù. (¿ìÃø) Á¤ÀûÀÎ(a) ¹× µ¿ÀûÀÎ(b) ¸¶ÀÌÅ©·Î¸ðÅÍ¿¡ °íÁ¤µÈ ź»ê¹«¼öÈ­È¿¼Ò·Î ó¸®ÇÑ ÈÄÀÇ Åº»êÄ®½·(CaCO3) ħÀü¿¡ ´ëÇÑ »çÁø. (C) ź»ê¹«¼öÈ­È¿¼ÒÀÇ Ã˸ÅÀÛ¿ë¿¡ ÀÇÇÑ ÀÌ»êȭź¼Ò ¼öÈ­¿¡ ´ëÇÑ ¸ÞÄ¿´ÏÁò. (a, b) ź»êÄ®½· °áÁ¤ÀÇ ÁÖ»çÀüÀÚÇö¹Ì°æ »çÁø.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 9¿ù 28ÀÏ]

[¿ø¹®º¸±â]

Tiny carbon-capturing motors could help clean up carbon dioxide pollution in the oceans

Machines that are much smaller than the width of a human hair could one day help clean up carbon dioxide pollution in the oceans. Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors that rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form. 

The proof of concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said researchers. The team, led by distinguished nanoengineering professor and chair Joseph Wang, published the work this month in the journal Angewandte Chemie.

"We're excited about the possibility of using these micromotors to combat ocean acidification and global warming," said Virendra V. Singh, a postdoctoral scientist in Wang's research group and a co-first author of this study. 

In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe. 

"In the future, we could potentially use these micromotors as part of a water treatment system, like a water decarbonation plant," said Kevin Kaufmann, an undergraduate researcher in Wang's lab and a co-author of the study. 

The micromotors are essentially six-micrometer-long tubes that help rapidly convert carbon dioxide into calcium carbonate, a solid mineral found in eggshells, the shells of various marine organisms, calcium supplements and cement. The micromotors have an outer polymer surface that holds the enzyme carbonic anhydrase, which speeds up the reaction between carbon dioxide and water to form bicarbonate. Calcium chloride, which is added to the water solutions, helps convert bicarbonate to calcium carbonate. 

The fast and continuous motion of the micromotors in solution makes the micromotors extremely efficient at removing carbon dioxide from water, said researchers. The team explained that the micromotors' autonomous movement induces efficient solution mixing, leading to faster carbon dioxide conversion. To fuel the micromotors in water, researchers added hydrogen peroxide, which reacts with the inner platinum surface of the micromotors to generate a stream of oxygen gas bubbles that propel the micromotors around. When released in water solutions containing as little as two to four percent hydrogen peroxide, the micromotors reached speeds of more than 100 micrometers per second. 

However, the use of hydrogen peroxide as the micromotor fuel is a drawback because it is an extra additive and requires the use of expensive platinum materials to build the micromotors. As a next step, researchers are planning to make carbon-capturing micromotors that can be propelled by water. 

"If the micromotors can use the environment as fuel, they will be more scalable, environmentally friendly and less expensive," said Kaufmann. 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] ÇØ»ó ¿¬·á·Î¼­ÀÇ Ãµ¿¬°¡½º È°¿ë
´ÙÀ½±Û [¹Ì±¹] »ýÅÂ°è ¼­ºñ½º Æò°¡: ¿¬¾È ³ì»ö ÀÎÇÁ¶ó¸¦ À§ÇØ ÇÊ¿äÇÑ ¿¬±¸°³¹ß
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.