Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ¹°»ê¾÷±â¼ú > ÃֽŴº½º
[¹Ì±¹] ÅÂ¾ç ¹° ºÐÇØ ±â¼úÀ» ±¸ÇöÇÑ ³ª³ë ±â¼ú ¿¬±¸Áø
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.09.09 Á¶È¸¼ö 844
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ÅÂ¾ç ¹° ºÐÇØ ±â¼úÀ» ±¸ÇöÇÑ ³ª³ë ±â¼ú ¿¬±¸Áø
 
¹Ì±¹ ¶óÀ̽º ´ëÇÐ(Rice University) ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀº Àϱ¤À¸·ÎºÎÅÍ ¿¡³ÊÁö¸¦ ¼öÈ®ÇÏ¿© ¹° ºÐÀÚ¸¦ ºÐÇØÇÔÀ¸·Î½á ûÁ¤ÇÏ°í Àç»ý °¡´ÉÇÑ ¿¡³ÊÁö·Î ÀüȯÇÏ´Â È¿À²ÀûÀÎ »õ·Î¿î ¹æ¹ýÀ» Áõ¸íÇß´Ù.

ÀÌ·¯ÇÑ ¹æ¹ýÀº Àϱ¤À¸·Î È°¼ºÈ­µÇ´Â ±Ý ³ª³ëÀÔÀÚ(light-activated gold nanoparticle)ÀÇ ¹è¿­¿¡ ÀÇÁ¸ÇÑ´Ù. ±Ý ³ª³ëÀÔÀÚ´Â Àϱ¤À» ¼öÈ®ÇÏ¿©, ÀüÀÚ¸¦ ¿©±â½ÃÅ°±â À§ÇÏ¿© ÅÂ¾ç ¿¡³ÊÁö(solar energy)¸¦ Àü´ÞÇÑ´Ù. °úÇÐÀÚµéÀº ¿©±âµÈ ÀüÀÚ¸¦ ¿­ÀüÀÚ(hot electron)¶ó°í ¾ð±ÞÇÑ´Ù. °ü·Ã ¿¬±¸´Â ¹Ì±¹ È­ÇÐÇÐȸ(ACS; American Chemical Society) Nano Letters Àú³Î¿¡ ¡°Á÷Á¢ ÇöóÁî¸ó À¯¹ß ±¤Àü±âÃ˸Š¹ÝÀÀ(Direct Plasmon-Driven Photoelectrocatalysis)¡±À̶ó´Â Á¦¸ñÀ¸·Î ¹ßÇ¥µÆ´Ù.

¿­ÀüÀÚ´Â ¸Å¿ì À¯¿ëÇÑ È­ÇÐ ¹ÝÀÀÀ» ÃßÁøÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀÌ ÀÖÁö¸¸, ÀÌ·¯ÇÑ ¿­ÀüÀÚ´Â ½Å¼ÓÇÏ°Ô ºÐÇØµÇ°í »ç¶÷µéÀº ÀÌ·¯ÇÑ ¿¡³ÊÁö¸¦ ÀÌ¿ëÇϱâ À§ÇÏ¿© Èû°ã°Ô ³ë·ÂÇØ¿Ô´Ù°í Ã¥ÀÓ ¿¬±¸¿øÀ̸ç, ¶óÀ̽º ´ëÇÐ »êÇÏ Àü±âÈ­Çаú ÄÄÇ»ÅÍ °øÇÐ ¹× Àç·á °úÇкΠ¼Ò¼ÓÀÇ Á¶±³¼öÀÎ Isabell ThomannÀº ¹àÇû´Ù. ¿¹¸¦ µé¸é, ¿À´Ã³¯ ÃÖÀûÀÇ Å¾籤 ¹ßÀü¿ë Áý¿­ÆÇ(photovoltaic solar panels)¿¡¼­ ¿¡³ÊÁö ¼Ò½ÇÀÇ ´ëºÎºÐÀº 1ÃÊ/1Á¶ À̳»ÀÇ ÂªÀº ½Ã°£ ³»¿¡ ³Ã°¢µÇ´Â ¿­ÀüÀÚ¿Í ¿­ÀüÀÚÀÇ ¿¡³ÊÁö°¡ Æó±â ¿­·Î ¹æÃâµÇ±â ¶§¹®ÀÌ´Ù.

³Ã°¢ÀÌ µÇ±â Àü ÀÌ·¯ÇÑ ³ôÀº ¿¡³ÊÁö ÀüÀÚ¸¦ Æ÷ȹÇÏ´Â °ÍÀº ÅÂ¾ç ¿¡³ÊÁö Á¦°øÀÚµéÀÌ ÅÂ¾ç ¿¡³ÊÁö¸¦ Àü±â µ¿·ÂÀ¸·Î Àüȯ½ÃÅ°´Â È¿À²À» Å©°Ô Áõ°¡½Ãų ¼ö ÀÖµµ·Ï ÇØÁÖ°í, žç Àü±â(solar electricity)ÀÇ ºñ¿ëÀ» ³·Ãß·Á´Â ±¹°¡Àû ¸ñÇ¥¸¦ ÃæÁ·ÇÒ ¼ö ÀÖ°Ô ÇØÁØ´Ù.

¶óÀ̽º ´ëÇÐ »êÇÏ LANP(Laboratory for Nanophotonics) ¼Ò¼ÓÀÇ Thomann°ú µ¿·á ¿¬±¸ÁøÀº Àϱ¤À¸·Î È°¼ºÈ­µÈ ³ª³ëÀÔÀÚ¸¦ ¿¬±¸Çß´Ù. Àϱ¤Àº Æ÷ȹµÇ¾î ³ª³ë ÀÔÀÚÀÇ ±Ý¼Ó Ç¥¸éÀ» °¡·ÎÁö¸£´Â À¯Ã¼Ã³·³ È帣´Â ÀüÀÚÀÇ ÆĵµÀÎ ÇöóÁî¸ó(plasmon)À¸·Î ÀüȯµÈ´Ù. ÇöóÁî¸óÀº ª°Ô ÀÜ·ùÇÏ´Â ³ôÀº ¿¡³ÊÁö »óÅÂÀÌÁö¸¸, ¶óÀ̽º ´ëÇÐ ¿¬±¸ÁøÀº ÇöóÁî¸ó ¿¡³ÊÁö(plasmonic energy)¸¦ Æ÷ȹÇÏ¿© ÀÌ°ÍÀ» À¯¿ëÇÑ ¿­ ¶Ç´Â ºûÀ¸·Î ÀüȯÇÏ´Â ¹æ¹ýÀ» ¹ß°ßÇß´Ù. ¶Ç ÇöóÁî¸ó ³ª³ë ÀÔÀÚ(plasmonic nanoparticles)´Â ¿­ÀüÀÚÀÇ µ¿·ÂÀ» ÀÌ¿ëÇÏ´Â °¡Àå À¯¸ÁÇÑ ¼ö´Ü Áß Çϳª¸¦ Á¦°øÇϸç, LANP ¿¬±¸ÁøÀº ¸î °³ÀÇ ÃÖ±Ù ¿¬±¸¿¡¼­ ¸ñÇ¥ÇÑ Áøº¸¸¦ ´Þ¼ºÇß´Ù.

Thomann°ú ±×³àÀÇ ¿¬±¸ÆÀÀÎ ¼®»ç °úÁ¤ ÇлýÀÎ Hossein Robatjazi, Shah Mohammad Bahauddin ¹× Chloe Doiron µîÀº ¿­ÀüÀڷκÎÅÍ ¹ß»ýÇÏ´Â ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© ¹° ºÐÀÚ¸¦ »ê¼Ò¿Í ¼ö¼Ò·Î ºÐÇØÇÏ´Â ½Ã½ºÅÛÀ» »ý¼ºÇß´Ù. »ê¼Ò¿Í ¼ö¼Ò°¡ Àü±â¸¦ ûÁ¤ÇÏ°í È¿À²ÀûÀ¸·Î »ý¼ºÇÏ´Â Àü±âÈ­ÇÐÀû ÀåÄ¡ÀÎ ¿¬·á ÀüÁöÀÇ ¿¬·áÀ̱⠶§¹®¿¡, ÀÌ ½Ã½ºÅÛÀº Áß¿äÇÏ´Ù.

¿­ÀüÀÚ¸¦ ÀÌ¿ëÇϱâ À§ÇÏ¿©, ¿¬±¸ÆÀÀº ¸ÕÀú »óÀÀÇÏ´Â ÇöóÁî¸ó ¿¡³ÊÁö¸¦ ¹Þ¾ÆµéÀÏ ¶§, ¿­ÀüÀÚ°¡ Á¦°ÅµÇ´Â ³·Àº ¿¡³ÊÁö »óÅÂÀÎ ÀüÀÚ ±¸¸Û(electron hole)À¸·ÎºÎÅÍ ¿­ÀüÀÚ¸¦ ºÐ¸®ÇÏ´Â ¹æ¹ýÀ» ãÀ» ÇÊ¿ä°¡ ÀÖ¾ú´Ù. ¿­ÀüÀÚÀÇ ÀÜ·ù ±â°£ÀÌ ÂªÀº ÇÑ °¡Áö ÀÌÀ¯´Â ¿­ÀüÀÚ°¡ »õ·Ó°Ô ¹ß°ßµÈ ¿¡³ÊÁö¸¦ ¹æÃâÇÏ°í ³·Àº ¿¡³ÊÁö »óÅ·ΠµÇµ¹¾Æ°¡·Á´Â °­·ÂÇÑ °æÇâÀ» °¡Áö°í Àֱ⠶§¹®ÀÌ´Ù. ÀÌ·¯ÇÑ Çö»óÀ» ÇÇÇÏ´Â À¯ÀÏÇÑ ¹æ¹ýÀº ¿­ÀüÀÚ¿Í ÀüÀÚ ±¸¸ÛÀÌ ¼­·Î ½Å¼ÓÇÏ°Ô ºÐ¸®µÇ´Â À§Ä¡¿¡¼­ ½Ã½ºÅÛÀ» °øÇÐÀûÀ¸·Î Á¦¾îÇÏ´Â °ÍÀÌ´Ù. ÀÌ °øÁ¤À» ¼öÇàÇϱâ À§ÇÑ ÀüÀÚ °øÇÐÀÚ¸¦ À§ÇÑ Ç¥ÁØ ¹æ¹ýÀº ÇÑÂÊ ¹æÇâÀ¸·Î¸¸ È帣´Â ¹ëºêó·³ ÇൿÇÏ´Â ¿¡³ÊÁö À庮À¸·Î È帣µµ·Ï ¿­ÀüÀÚ¸¦ À¯µµÇÏ´Â °ÍÀÌ´Ù.

ThomannÀº ÀÌ Á¢±Ù ¹æ¹ýÀÌ ³»ÀçÀûÀÎ ºñÈ¿À²¼ºÀ» °¡Áö°í ÀÖÁö¸¸, ÀüÀÚ °øÇÐ ºÐ¾ßÀÇ ¼îƮŰ À庮(Schottky barriers)À̶ó°í ºÒ¸®´Â Àß ¾Ë·ÁÁø ±â¼úÀ» »ç¿ëÇϱ⠶§¹®¿¡ °øÇÐÀڵ鿡°Ô´Â ¸Å·ÂÀûÀÎ ¹æ¹ýÀ̶ó°í ¹àÇû´Ù.

³»ÀçÇÏ´Â ºñÈ¿À²¼º ¶§¹®¿¡, ¿¬±¸ÆÀÀº ¹®Á¦¸¦ ÇØ°áÇÏ´Â »õ·Î¿î Á¢±Ù ¹æ¹ýÀ» ã±â¸¦ ¿øÇß´Ù°í ThomannÀº ¹àÇû´Ù. ¿¬±¸ÁøÀº ºñ»ó¿ë Á¢±Ù ¹æ¹ýÀ» Á¶¸íÇß´Ù. ¿¬±¸ÁøÀº ¿­ÀüÀÚ¸¦ Á¦°ÅÇÏ´Â, ´ë½Å¿¡ ÀüÀÚ ±¸¸ÛÀ» À̵¿½ÃÅ°´Â ½Ã½ºÅÛÀ» °í¾ÈÇß´Ù. »ç½Ç»ó, ¿¬±¸ÁøÀÇ ½Ã½ºÅÛÀº ü ¶Ç´Â ¸·°ú °°ÀÌ ÀÛ¿ëÇß´Ù. ±¸¸ÛÀº Åë°úÇÒ ¼ö ÀÖÁö¸¸, ¿­ÀüÀÚ´Â Åë°úÇÒ ¼ö ¾øÀ¸¸ç, µû¶ó¼­ ¿­ÀüÀÚ´Â ÇöóÁî¸ó ³ª³ëÀÔÀÚÀÇ Ç¥¸é À§¿¡¼­ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â »óÅ·Π³²¾Æ ÀÖ¾ú´Ù.

»õ·Î¿î ÀåÄ¡´Â 3°¡Áö Àç·áÀÇ ÃþÀ¸·Î ±¸¼ºµÈ´Ù. ÇÏÃþÀº ¾ãÀº ºû³ª´Â ¾Ë·ç¹Ì´½ ÆÇÀÌ´Ù. ÀÌ ÃþÀº Åõ¸íÇÑ ´ÏÄÌ »êÈ­¹°(nickel-oxide)·Î ¾ãÀº ÄÚÆÃÀ¸·Î µ¤¿© ÀÖÀ¸¸ç, »ê¶õµÈ »óÃþÀº Á÷°æ ¾à 10~30³ª³ë¹ÌÅÍ °¡·®ÀÇ ÆÜ°ú °°Àº µð½ºÅ© ÇüÅÂÀÇ ÇöóÁî¸ó ±Ý ³ª³ëÀÔÀÚ(plasmonic gold nanoparticles)ÀÇ ¼öÁýÀÌ ÀÌ·ç¾îÁø´Ù.

Àϱ¤ÀÌ µð½ºÅ©¸¦ ¶§¸± ¶§, ¾Ë·ç¹Ì´½À¸·ÎºÎÅÍ ¹Ý»ç ¶Ç´Â Á÷Á¢ÀûÀ¸·Î µð½ºÅ©°¡ ºû ¿¡³ÊÁö¸¦ ¿­ÀüÀÚ·Î Àüȯ½ÃŲ´Ù. ¾Ë·ç¹Ì´½Àº °á°úÀûÀ¸·Î ÀüÀÚ ±¸¸ÛÀ» ²ø¾î´ç±â°í, ´ÏÄÌ »êÈ­¹°ÀÌ ÀüÀÚ ±¸¸ÛÀ» Åë°úÇÏ´Â ÇÑÆí, ¿­ÀüÀÚ¿¡´Â ¿µÇâÀ» ¹ÞÁö ¾Ê´Â À庮À¸·Î ÀÛ¿ëÇÏ¿© ¿­ÀüÀÚ°¡ ±Ý À§¿¡ ³²¾Æ ÀÖ°Ô ÇØÁØ´Ù. ÆòÆòÇÑ Àç·á ½ÃÆ®¸¦ ¹èÄ¡ÇÏ°í, ¹°·Î Àç·á ½ÃÆ®¸¦ µ¤¾î¼­, ±Ý ³ª³ëÀÔÀÚ°¡ ¹°À» ºÐÇØÇÏ´Â Ã˸ŷΠÀÛ¿ëÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¾ú´Ù. ÇöÀçÀÇ ½ÇÇè¿¡¼­, ¿¬±¸ÁøÀº ºÐÇØ·Î »ý¼ºµÇ´Â ¼ö¼Ò¿Í »ê¼Ò ±âü¸¦ Á÷Á¢ÀûÀ¸·Î ÃøÁ¤ÇÏ´Â ´ë½Å¿¡ ¹° ºÐÇØ¿¡ ´ëÇÑ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ±¤Àü·ù¸¦ ÃøÁ¤Çß´Ù. ±×·¯³ª ThomannÀº °á°ú°¡ Ãß°¡ÀûÀÎ ¿¬±¸·Î µÞ¹ÞħµÇ¾î¾ß ÇÑ´Ù°í ¹àÇû´Ù.

¿¬±¸ÁøÀÌ ±¤Àü·ù È¿À²À» ÃøÁ¤Çß´ø ¿­ÀüÀÚ Àϱ¤ ¹° ºÐÇØ ±â¼úÀ» »ç¿ëÇÏ´Â °ÍÀº ´õ °í°¡ÀÇ ±¸¼º ¿ä¼Ò¸¦ ÀÌ¿ëÇÏ´Â »ó´çÈ÷ ´õ º¹ÀâÇÑ ±¸Á¶¸¦ ÀÌ¿ëÇÏ´Â °Í°ú À¯»çÇÏ´Ù°í ThomannÀº ¹àÇû´Ù. ¿¬±¸ÁøÀº ÀÌ¹Ì º¸¿©ÁØ °á°ú¸¦ Å©°Ô °³¼±Çϱâ À§ÇÏ¿© ½Ã½ºÅÛÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ÀÚ½ÅÇß´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 9¿ù 9ÀÏ]

[¿ø¹®º¸±â]

Nanotechnology researchers demo solar water-splitting technology

Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules. 

The technology, which is described online in the American Chemical Society journal Nano Letters ("Direct Plasmon-Driven Photoelectrocatalysis"), relies on a configuration of light-activated gold nanoparticles that harvest sunlight and transfer solar energy to highly excited electrons, which scientists sometimes refer to as "hot electrons." 

"Hot electrons have the potential to drive very useful chemical reactions, but they decay very rapidly, and people have struggled to harness their energy," said lead researcher Isabell Thomann, assistant professor of electrical and computer engineering and of chemistry and materials science and nanoengineering at Rice. "For example, most of the energy losses in today's best photovoltaic solar panels are the result of hot electrons that cool within a few trillionths of a second and release their energy as wasted heat."

Capturing these high-energy electrons before they cool could allow solar-energy providers to significantly increase their solar-to-electric power-conversion efficiencies and meet a national goal of reducing the cost of solar electricity.

In the light-activated nanoparticles studied by Thomann and colleagues at Rice's Laboratory for Nanophotonics (LANP), light is captured and converted into plasmons, waves of electrons that flow like a fluid across the metal surface of the nanoparticles. Plasmons are high-energy states that are short-lived, but researchers at Rice and elsewhere have found ways to capture plasmonic energy and convert it into useful heat or light. Plasmonic nanoparticles also offer one of the most promising means of harnessing the power of hot electrons, and LANP researchers have made progress toward that goal in several recent studies.

Thomann and her team, graduate students Hossein Robatjazi, Shah Mohammad Bahauddin and Chloe Doiron, created a system that uses the energy from hot electrons to split molecules of water into oxygen and hydrogen. That's important because oxygen and hydrogen are the feedstocks for fuel cells, electrochemical devices that produce electricity cleanly and efficiently.

To use the hot electrons, Thomann's team first had to find a way to separate them from their corresponding "electron holes," the low-energy states that the hot electrons vacated when they received their plasmonic jolt of energy. One reason hot electrons are so short-lived is that they have a strong tendency to release their newfound energy and revert to their low-energy state. The only way to avoid this is to engineer a system where the hot electrons and electron holes are rapidly separated from one another. The standard way for electrical engineers to do this is to drive the hot electrons over an energy barrier that acts like a one-way valve. Thomann said this approach has inherent inefficiencies, but it is attractive to engineers because it uses well-understood technology called Schottky barriers, a tried-and-true component of electrical engineering.

"Because of the inherent inefficiencies, we wanted to find a new approach to the problem," Thomann said. "We took an unconventional approach: Rather than driving off the hot electrons, we designed a system to carry away the electron holes. In effect, our setup acts like a sieve or a membrane. The holes can pass through, but the hot electrons cannot, so they are left available on the surface of the plasmonic nanoparticles."

The setup features three layers of materials. The bottom layer is a thin sheet of shiny aluminum. This layer is covered with a thin coating of transparent nickel-oxide, and scattered atop this is a collection of plasmonic gold nanoparticles -- puck-shaped disks about 10 to 30 nanometers in diameter.

When sunlight hits the discs, either directly or as a reflection from the aluminum, the discs convert the light energy into hot electrons. The aluminum attracts the resulting electron holes and the nickel oxide allows these to pass while also acting as an impervious barrier to the hot electrons, which stay on gold. By laying the sheet of material flat and covering it with water, the researchers allowed the gold nanoparticles to act as catalysts for water splitting. In the current round of experiments, the researchers measured the photocurrent available for water splitting rather than directly measuring the evolved hydrogen and oxygen gases produced by splitting, but Thomann said the results warrant further study.

"Utilizing hot electron solar water-splitting technologies we measured photocurrent efficiencies that were on par with considerably more complicated structures that also use more expensive components," Thomann said. "We are confident that we can optimize our system to significantly improve upon the results we have already seen."
 
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ÀϺ»] ÇϼöÀÇ ¿­À» °øÀå¿¡ °ø±ÞÇϱâ À§ÇÑ ¹Î°ü °øµ¿¿¬±¸
´ÙÀ½±Û [¹Ì±¹] STW¡¤Sunstone ¹«¹æ·ù±â¼úÀÇ ½ÃÀå Àû¿ë
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.