Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > »óÇϼöµµ > »ó¼ö/ÁöÇϼö
[¹Ì±¹] ¹Ì»ý¹°, °¡Àå °­ÇÑ PFAS¸¦ ºÐÇØ
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2022.05.31 Á¶È¸¼ö 484
ÆÄÀÏ÷ºÎ

[¹Ì±¹] ¹Ì»ý¹°, °¡Àå °­ÇÑ PFAS¸¦ ºÐÇØ

Çø±â¼º Á¶°Ç ÇÏ¿¡ ÀϹÝÀûÀÎ ¹Ì»ý¹° ±ºÁý, ÃÊ°­·Â ź¼Ò-ºÒ¼Ò °áÇÕÀ» ±ú¶ß¸± ¼ö ÀÖ¾î




UC ¸®¹ö»çÀ̵å.jpeg

À¯Áö¿¡ ¸Ç. [»çÁøÁ¦°ø = UC Riverside]


Ķ¸®Æ÷´Ï¾Æ ÁÖ¸³´ë ¸®¹ö»çÀ̵å Ä·ÆÛ½º(UC Riverside)ÀÇ ¿¬±¸ÆÀÀº ÀÏ¹Ý ¹Ì»ý¹°¿¡ ÀÇÇØ ºÒ¼ÒÈ­ Ä«¸£º¹½Ç»ê(FCAs)À̶ó°í ºÒ¸®´Â ƯÈ÷ ¿Ï°íÇÑ Á¾·ùÀÇ PFAS¸¦ ¼±ÅÃÀûÀ¸·Î ºÐÇØÇÒ ¼ö ÀÖ´Ù´Â ¿¬±¸°á°ú¸¦ ÃÖÃÊ·Î ¹ßÇ¥Çß´Ù.


Çø±â¼º Á¶°Ç ÇÏ¿¡ ź¼Ò-ź¼Ò ÀÌÁß °áÇÕÀº ¹Ì»ý¹° ±ºÁý¿¡ ÀÇÇÑ ÃÊ°­·Â ź¼Ò-ºÒ¼Ò °áÇÕÀ» ±ú¶ß¸®´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Ù. ź¼Ò-ź¼Ò °áÇÕÀ» ±ú¶ß¸®´Â °ÍÀÌ ºÐÀÚ¸¦ ¿ÏÀüÈ÷ ºÐÇØÇÏ´Â °ÍÀº ¾Æ´ÏÁö¸¸, À̸¦ ÅëÇØ »ý¼ºµÈ »ý¼º¹°Àº È£±â¼º Á¶°Ç¿¡¼­ Å»ºÒ¼ÒÈ­¸¦ À§ÇØ ´Ù¸¥ ¹Ì»ý¹°¿¡ Àü´ÞµÉ ¼ö ÀÖ¾î Áß¿äÇÏ´Ù.


ÀÌ ¼º°ú´Â ź¼Ò-ºÒ¼Ò °áÇÕÀ» ź¼Ò-¼ö¼Ò °áÇÕÀ¸·Î ´ëüÇÏ¿© ¿ÏÀüÈ÷ ºÒ¼ÒÈ­µÈ PFAS ±¸Á¶ÀÇ ¹Ì»ý¹° Å»ºÒ¼ÒÈ­¿¡ ÃÖÃÊ·Î ¼º°øÇß´Ù°í º¸°íÇÑ º» ¿¬±¸ÆÀÀÇ ÀÌÀü ¿¬±¸¸¦ ±â¹ÝÀ¸·Î ÇÑ´Ù.


PFAS(Per-fluoroalkyl) ¶Ç´Â PFAS(Polyfluoroalkyl)´Â 1940³â´ë ÀÌÈÄ ¼ö¸¹Àº »ê¾÷ °øÁ¤ ¹× »ó¾÷ Á¦Ç°¿¡ »ç¿ëµÈ 9õ °³ ÀÌ»óÀÇ È­ÇÐ ¹°ÁúÀÌ´Ù. ±× °á°ú, PFAS´Â ¹° ¼øȯ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÌÁ¦ °ÅÀÇ ¸ðµç ¼ö¿ø¿¡¼­ ¹ß°ßµÈ´Ù. ÀÌ È­ÇÐ ¹°ÁúÀº ¾Ë·ÁÁø °¡Àå °­·ÂÇÑ ´ÜÀÏ °áÇÕÀÎ ºÒ¼Ò¿Í ź¼Ò ¿øÀÚ »çÀÌÀÇ °áÇÕÀÌ Æ÷ÇԵǾî ÀÖ¾î, PFAS¸¦ »ýºÐÇØÇÒ ¼ö ¾ø°í ±âÁ¸ÀÇ ¼öó¸® ¹æ¹ý¿¡ ³»¼ºÀ» °®°Ô ÇÑ´Ù. ÀÌ ¿À¿°¹°ÁúÀº Àΰ£À» Æ÷ÇÔÇÑ À¯±âü Á¶Á÷¿¡ µé¾î°¡ ÀϺΠÀ¯ÇüÀÇ ¾Ï, °©»ó¼± ¹× °£ ¹®Á¦, ±×¸®°í ¿©ÀüÈ÷ Àß ¾Ë·ÁÁöÁö ¾Ê´Â ±âŸ °Ç°­ ¹®Á¦¸¦ ÀÏÀ¸Å²´Ù.


ÀÌÀü ³í¹®¿¡¼­ È­ÇÐ ¹× ȯ°æ °øÇÐ Á¶±³¼öÀÎ À¯Áö¿¡ ¸Ç(Yujie Men) ¿¬±¸ÆÀÀº Çø±â¼º ¹Ì»ý¹° ±ºÁýÀº ¿ÏÀüÈ÷ ºÒ¼ÒÈ­µÈ ¶Ç´Â °úºÒ¼ÒÈ­µÈ ±¸Á¶¸¦ Æ÷ÇÔÇÑ µÎ °¡Áö ƯÁ¤ PFAS¸¦ ºÐÇØÇϱâ À§ÇÑ Å»¿°¼Ò¿¡ ÀÚÁÖ »ç¿ëµÈ´Ù°í º¸°íÇß´Ù.


À̹ø ³í¹®Àº Çø±â¼º ¹Ì»ý¹°ÀÇ ÁøÀÔÁ¡ÀÌ FCA ºÐÀÚÀÇ Ä«¸£º¹½Ç±â(carboxyl group) ¿·¿¡ À§Ä¡ÇÑ Åº¼Ò ¿øÀÚ »çÀÌÀÇ ÀÌÁß °áÇÕÀÓÀ» º¸¿©ÁÜÀ¸·Î½á, ÀÌ ¿¬±¸¸¦ ÇÑ ´Ü°è ´õ ¹ßÀü½ÃÄ×´Ù. ÀÌÁß °áÇÕ »óÀÇ Æ®¸®Ç÷ç¿À·Î¸ÞÆ¿(Trifluoromethyl) °¡Áö°¡ »ýºÐÇؼºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ´Ù.


ÀÌ·¯ÇÑ À¯ÇüÀÇ Å»ºÒ¼ÒÈ­¸¦ ¼öÇàÇÒ ¼ö ÀÖ´Â ¹Ì»ý¹°Àº µå¹°Áö ¾Ê´Ù. À¯±â¹°À» ºÐÇØÇÏ°í Á¦°ÅÇϱâ À§ÇØ Æó¼ö ó¸® ½Ã¼³¿¡¼­ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ¹Ì»ý¹° ±ºÁýÀÎ È°¼º ½½·¯Áö¿Í Çø±â¼º Á¶°ÇÀ» »ç¿ëÇÏ¿© ¿¬±¸¿øµéÀº ±¸Á¶ÀûÀ¸·Î ´õ À¯»çÇÑ PFAS¸¦ »ç¿ëÇÏ¿© ÀÌÀü ½ÇÇèÀ» ¼º°øÀûÀ¸·Î ¹Ýº¹Çß´Ù.


¸Ç ±³¼ö´Â ¡°ÇöÀç PFOA¿Í °°Àº °úºÒ¼Ò È­ÇÕ¹°À» Å»ºÒ¼ÒÈ­ÇÒ ¼ö ÀÖ´Â »ýü Ã˸Ŵ ¸Å¿ì µå¹°´Ù. ¿ì¸®´Â ¿©ÀüÈ÷ ¾î¶² ¹Ì»ý¹°À̳ª È¿¼Ò°¡ ÀϹÝÀûÀ¸·Î PFASÀÇ Å»ºÒ¼ÒÈ­¸¦ ÇÒ ¼ö ÀÖ°í ¾î¶»°Ô ÀÛ¿ëÇÏ´ÂÁö¿¡ ´ëÇØ °ÅÀÇ ¾ËÁö ¸øÇÑ´Ù¡±¶ó¸ç, "¿ì¸®ÀÇ ÀÛ¾÷Àº ÀÌ·¯ÇÑ Á¤º¸¸¦ ã´Â µ¥ ÀÖ¾î °¡Àå ¾Õ¼­ ÀÖ´Ù"°í ÀüÇß´Ù.


°úÇÐÀÚµéÀÌ °úºÒ¼Ò È­ÇÕ¹°¿¡¼­ Ãʱâ ź¼Ò-ºÒ¼Ò °áÇÕÀ» ²÷´Â ¹æ¹ýÀ» ¾Ë¾Æ³ÂÀ» ¶§Á¶Â÷, ±×µéÀÇ ¿¬±¸´Â ÀÌ·ç¾îÁöÁö ¾Ê°í Àִµ¥, ±× ºÐÀÚµéÀÌ ¶ÇÇÑ ÇØ·Î¿ï ¼ö ÀÖ´Â ´Ù¸¥ ºÐÀÚ·Î ºÐÇØµÉ °¡´É¼ºÀÌ Àֱ⠶§¹®ÀÌ´Ù. PFAS·Î ¿À¿°µÈ ȯ°æÀ» ¼º°øÀûÀ¸·Î º¹¿øÇÏ·Á¸é PFAS ¸ðºÐÀÚ¸¦ Ãʱ⠺ÐÇØÇÑ ÈÄ 2Â÷ ºÐÀÚ¸¦ ¿ÏÀüÈ÷ ºÐÇØÇØ¾ß ÇÑ´Ù.


¸Ç ±³¼öÀÇ ¿¬±¸ÆÀÀÇ ÃÖ±Ù ¿¬±¸´Â È°¼º ½½·¯Áö ±ºÁýÀÌ °øµ¿´ë»ç(cometabolism)·Î ¾Ë·ÁÁø °úÁ¤À» ÅëÇØ ÇÑ Á¾·ùÀÇ °úºÒ¼ÒÈ­ È­ÇÐ ¹°ÁúÀÇ È­ÇÐÀû ºÐÇطκÎÅÍ 2Â÷ ºÐÀÚ¸¦ ¿ÏÀüÈ÷ ºÐÇØÇÒ ¼ö ÀÖÀ½À» º¸¿©Áá´Ù. ±×µéÀÇ »õ·Î¿î ¿¬±¸´Â ´õ ³ª¾Æ°¡ ´Ü¼øÈ÷ Çø±â¼º ¹× È£±â¼º ¹ÚÅ׸®¾Æ¿Í °°Àº ´Ù¸¥ ¹Ì»ý¹° ±×·ìµé °£ÀÇ Çù·ÂÀ» ÅëÇØ Æ¯Á¤ °úºÒ¼ÒÈ­ È­Çй°Áú¿¡ ´ëÇØ ´õ ±íÀº Å»ºÒ¼ÒÈ­°¡ ÀÌ·ç¾îÁú ¼ö ÀÖÀ½À» ¾Ï½ÃÇÑ´Ù.


°øµ¿ ÀúÀڷδ UC RiversideÀÇ Yaochun Yu, Shun Che, Changxu Ren, Bosen Jin, Jinyong Liu¿Í Northeastern UniversityÀÇ Zhenyu TianÀÌ ÀÖ´Ù. º» ¿¬±¸´Â "Çø±â¼º ¹× È£±â¼º Á¶°Ç¿¡¼­ ºÒÆ÷È­ °úºÒÈ­ Ä«¸£º¹½Ç»ê ¹× ´ÙÁߺÒÈ­ Ä«¸£º¹½Ç»êÀÇ ¹Ì»ý¹° Å»ºÒ¼ÒÈ­: ±¸Á¶ ƯÀ̼º ¿¬±¸"¶ó´Â ³í¹®À¸·Î ¡ºÈ¯°æ°úÇбâ¼ú(Environmental Science & Technology)¡»¿¡ °ÔÀçµÆ´Ù.


[¿ø¹®º¸±â]


Microbes can degrade the toughest PFAS

Under anaerobic conditions, common microbial communities can break the ultra-strong carbon-fluorine bond


ngineers at UC Riverside are the first to report selective breakdown of a particularly stubborn class of PFAS called fluorinated carboxylic acids (FCAs) by common microorganisms. 


Under anaerobic conditions, a carbon-carbon double bond is crucial for the shattering the ultra-strong carbon-fluorine bond by microbial communities. While breaking the carbon-carbon bond does not completely degrade the molecule, the resulting products could be relayed to other microorganisms for defluorination under in aerobic conditions. 


The achievement builds upon prior work by the same researchers, who were the first to report successful microbial defluorination of a fully fluorinated PFAS structure by replacing carbon–fluorine bonds with carbon-hydrogen bonds. 


Per- and polyfluoroalkyl substances, or PFAS, are a group of over 9,000 chemicals used in countless industrial processes and commercial products since the 1940s. As a result, PFAS have found their way into the water cycle and are now found in virtually every water source. These chemicals contain a bond between fluorine and carbon atoms that is the strongest single bond known, rendering PFAS non-biodegradable and resistant to conventional water treatment methods. They wind up in the tissues of organisms, including humans, where they have been associated with some types of cancer, thyroid and liver problems, and likely other, still poorly understood, health problems.


In an earlier paper, Yujie Men, an assistant professor of chemical and environmental engineering, and her colleagues reported using anaerobic microbial communities often used for dechlorination to degrade two specific PFAS, including one fully fluorinated, or perfluorinated, structure. 


The new paper takes this research a step further by showing that the point of entry for the anaerobic microbes was a double bond between carbon atoms located next to the carboxyl group of the FCA molecules. Trifluoromethyl branches on the double bond could further enhance the biodegradability.


Microbes capable of doing this type of defluorination are not rare. Using activated sludge —  microbial communities commonly used in wastewater treatment facilities to break down and remove organic matter — and an anaerobic condition, the researchers successfully repeated their earlier experiment with more structurally similar PFAS. 


¡°Currently biocatalysts that can do defluorination of perfluorinated compounds like PFOA are very rare. We still know very little about which microbes or enzymes can do the defluorination of PFAS in general and how,¡± said Men. ¡°Our work is at the leading edge of finding this information.¡±


Even when scientists figure out ways to break the initial carbon-fluorine bond in perfluorinated compounds, their work isn¡¯t done because the molecules are likely broken down into other molecules that could also be harmful. Successful remediation of PFAS-contaminated environments requires initial breakdown of the PFAS parent molecule followed by complete degradation of the secondary molecules. 


One recent study by the Men group demonstrated that activated sludge communities were able to completely degrade the secondary molecule from chemical degradation of one type of perfluorinated chemical via a process known as cometabolism. Their new study further implies that simply through the cooperation among different microbial groups, such as anaerobic and aerobic bacteria, deeper defluorination could also be achieved for certain perfluorinated chemicals.


Men¡¯s co-authors include Yaochun Yu, Shun Che, Changxu Ren, Bosen Jin, and Jinyong Liu at UC Riverside and Zhenyu Tian at Northeastern University. The paper, ¡°Microbial defluorination of unsaturated per- and polyfluorinated carboxylic acids under anaerobic and aerobic conditions: a structure specificity study,¡± is published in Environmental Science & Technology and is available here.


[Ãâó = UC Riverside(https://news.ucr.edu/articles/2022/05/23/microbes-can-degrade-toughest-pfas) / 2022³â 5¿ù 23ÀÏ]

¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [ij³ª´Ù] H2O À̳뺣À̼Ç, 78¾ï¿ø ±Ô¸ð »óÇϼöµµ ÇÁ·ÎÁ§Æ® 3°Ç ¼öÁÖ
´ÙÀ½±Û [¿µ±¹] Çؼö´ã¼öÈ­ °úÁ¤¼­ PA ¸· ÅëÇØ ¹°ºÐÀÚ ¿òÁ÷ÀÓ ÃÖÃÊ ¿¬±¸
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.