Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > »óÇϼöµµ > Çϼö/Æó¼ö
[¹Ì±¹] ȯ°æ ¿À¿°¹°ÁúÀ» Á¦°ÅÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ý
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.07.28 Á¶È¸¼ö 213
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ȯ°æ ¿À¿°¹°ÁúÀ» Á¦°ÅÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ý


Àΰ£µéÀÌ ¸¸µç ¸¹Àº ¿À¿° ¹°ÁúµéÀº ÀÚ¿¬ÀûÀÎ °úÁ¤À¸·Î ºÐÇصǰí, Æ÷À¯·ù¿Í ±âŸ µ¿¹°ÀÇ È£¸£¸ó°ú ±âŸ ½Ã½ºÅÛÀ» ¹æÇØÇÏ´Â ¿ªÇÒÀ» ÇÑ´Ù. ±âÁ¸ÀÇ ¹æ¹ýÀ¸·Î´Â ÀÌ·± µ¶¼º ¹°ÁúµéÀ» Á¦°ÅÇϴµ¥ ¸¹Àº ºñ¿ë°ú ½Ã°£ÀÌ ¼Ò¸ðµÈ´Ù. Àú³Î Nature Communications¿¡ °ÔÀçµÈ ÃÖ±Ù ¿¬±¸¿¡¼­, MIT¿Í °íÀ̾ƽº ¿¬¹æ´ëÇÐ(Federal University of Goiás)ÀÇ ¿¬±¸ÁøÀº ³ª³ëÀÔÀÚ¿Í Àڿܼ±À» »ç¿ëÇÏ´Â »õ·Î¿î ¹æ¹ýÀÌ Åä¾ç°ú ¹°¼ÓÀÇ ´Ù¾çÇÑ ¿À¿°¹°ÁúÀ» ºü¸£°Ô ºÐ¸®ÇÏ°í ÃßÃâÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇß´Ù.

À̹ø ¿¬±¸ÁøÀº ÀÌ ¿¬±¸°á°ú¸¦ ¿ì¿¬ÇÏ°Ô ¹ß°ßÇß´Ù. ±×µéÀº ¾Ï ¼¼Æ÷¿¡ ¾à¹°À» Àü´ÞÇÏ´Â ³ª³ëÀÔÀÚ¸¦ °³¹ßÇÏ´Ù°¡ ÀÌ ³ª³ëÀÔÀÚ°¡ ¹°°ú Åä¾ç ¼ÓÀÇ ¿À¿°¹°ÁúÀ» ÃßÃâÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù. À̹ø ¿¬±¸ÁøÀº Àڿܼ± ±¤¿¡ ³ëÃâÇÏ¸é º®°³µÇ´Â Æú¸®¸Ó¸¦ ÀÌÀü¿¡ ÇÕ¼ºÇß´Ù. ±×·¯³ª Àڿܼ± ±¤ÀÌ Á¶Á÷°ú ¼¼Æ÷¿¡ ¼Õ»óÀ» Áֱ⠶§¹®¿¡ ¾à¹° Àü´Þ¿¡ ÀûÇÕÇÏÁö ¾Ê´Ù°í »ý°¢Çß´Ù. À̹ø ¿¬±¸ÁøÀº Àڿܼ± ±¤ÀÌ ¹°À» ¼Òµ¶Çϴµ¥ »ç¿ëµÈ´Ù´Â °ÍÀ» ¾Ë°Ô µÇ¾úÀ» ¶§, ÀÌ°ÍÀ» ´Ù¸¥ ºÐ¾ß¿¡ Àû¿ëÇϱâ À§Çؼ­ ³ë·ÂÇß´Ù.

¡°¿ì¸®´Â Àڿܼ± ±¤À» »ç¿ëÇÑ´Ù¸é ÀÌ ÀÔÀÚµéÀ» ´Ù¸¥ ºÐ¾ß¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Ù°í »ý°¢Çß´Ù¡±°í BrandlÀÌ ¸»Çß´Ù. ¡°±× ÈÄ¿¡ ¿ì¸®´Â Àڿܼ± ±¤À» Á¶»çÇßÀ» ¶§ ÀÔÀÚµéÀÌ ÀÀÁýÇÑ´Ù´Â °ÍÀ» °üÂûÇ߱⠶§¹®¿¡ ¹°¼ÓÀÇ µ¶¼º È­ÇÐ ¹°Áú, ¿À¿° ¹°Áú, È£¸£¸óÀ» Á¦°ÅÇϴµ¥ ¿ì¸®ÀÇ ÀÔÀÚµéÀ» »ç¿ëÇß´Ù¡±°í BrandlÀÌ ¾ð±ÞÇß´Ù. 

À̹ø ¿¬±¸ÁøÀº Æú¸®¿¡Æ¿·»±Û¸®ÄÝ(Ä¡¾à µî¿¡ Æø³Ð°Ô »ç¿ëµÇ°í ÀÖ´Â È­ÇÕ¹°), Æú¸®¶ôÆ®»ê(À¯¸® µî¿¡ »ç¿ëµÇ´Â »ýºÐÇؼº Çöó½ºÆ½)À¸·Î Æú¸®¸Ó¸¦ ÇÕ¼ºÇß´Ù. ÀÌ·± Æú¸®¸Ó·Î ¸¸µé¾îÁø ³ª³ëÀÔÀÚµéÀº ¼Ò¼ö¼º ÄÚ¾î¿Í Ä£¼ö¼º ½©À» °¡Áö°í ÀÖ´Ù. ºÐÀÚ Å©±âÀÇ Èû ¶§¹®¿¡, ¼Ò¼ö¼º ¿À¿° ºÐÀÚµéÀº ¼Ò¼ö¼º ³ª³ëÀÔÀÚ¸¦ ÇâÇؼ­ ¿òÁ÷ÀÌ°í, ±×µéÀ» È¿À²ÀûÀ¸·Î Æ÷ÁýÇÒ ¼ö Àִ ǥ¸é À§¿¡ Èí¼öµÈ´Ù.

ÀÌ·± ³ª³ë¹°ÁúµéÀº ¹°¼Ó¿¡ ±ÕÀÏÇÏ°Ô ºÐ»êµÇ¾î ÀÖ´Ù. ±×·¯³ª Àڿܼ± ±¤¿¡ ³ëÃâµÉ ¶§, ÀÔÀÚÀÇ ¾ÈÁ¤È­µÈ ¿ÜºÎ ½©ÀÌ »ç¶óÁüÀ¸·Î½á ¿©°ú, ħÀüÀ» ÅëÇؼ­ Á¦°ÅµÉ ¼ö ÀÖ´Â ´õ Å« ÀÀÁýü¸¦ Çü¼ºÇÑ´Ù. À̹ø ¿¬±¸ÁøÀº Æó¼ö·ÎºÎÅÍ ÇÁÅ»·¹ÀÌÆ®(phthalate, È£¸£¸óÀ» ±³¶õÇÏ´Â È­Çй°Áú), BPA, ´Ù·û¼º ¹æÇâÁ· źȭ¼ö¼Ò(polycyclic aromatic hydrocarbon) µîÀ» ÃßÃâÇϴµ¥ ÀÌ ¹æ¹ýÀ» »ç¿ëÇß´Ù. ÀÌ ÇÁ·Î¼¼½º´Â ºñ°¡¿ªÀûÀÌ°í Æú¸®¸Ó´Â »ýºÐÇؼºÀ» °¡Áö°í Àֱ⠶§¹®¿¡ µ¶¼ºÀ» °¡Áø 2Â÷ »ý¼º¹°À» ³²±âÁö ¾Ê´Â´Ù.

À̹ø ¿¬±¸Áø¿¡ µû¸£¸é, ÀÌ ¿¬±¸°á°ú´Â ÀÛÀº ºÐÀÚµéÀÌ ³ª³ëÀÔÀÚ Ç¥¸é À§¿¡ ¼öµ¿ÀûÀ¸·Î Èí¼öÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. ¡°¿ì¸®°¡ ¾Æ´Â ÇÑ, ÀÌ°ÍÀº ¹Ì¸® Çü¼ºµÈ ³ª³ëÀÔÀÚ¿Í ÀÛÀº ºÐÀÚµéÀÇ »óÈ£ÀÛ¿ëÀ» Á÷Á¢ÀûÀ¸·Î ÃøÁ¤ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁØ ÃÖÃÊÀÇ »ç·Ê¡±¶ó°í À̹ø ¿¬±¸ÁøÀº ¸»Çß´Ù.

´õ Èï¹Ì·Î¿î °ÍÀº ȯ°æÀûÀÎ °³¼±¿¡¼­ºÎÅÍ ÀÇ·áÀû ºÐ¼®±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡ Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖ´Ù´Â Á¡ÀÌ´Ù. Æú¸®¸Ó´Â »ó¿Â¿¡¼­ ÇÕ¼ºµÇ°í, ƯÁ¤ È­ÇÕ¹°À» ´ë»óÀ¸·Î Ưº°ÇÏ°Ô Á¦Á¶µÉ ÇÊ¿ä°¡ ¾ø´Ù. ±×µéÀº ¸ðµç Á¾·ùÀÇ ¼Ò¼ö¼º È­Çй°Áú°ú ºÐÀڵ鿡 Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖ´Ù. ¡°¿ì¸®°¡ ¿À¿°¹°ÁúÀ» Á¦°ÅÇϴµ¥ »ç¿ëµÈ »óÈ£ÀÛ¿ëÀº ºñ-ƯÀ̼ºÀ» °¡Áø´Ù¡±°í BrandlÀÌ ¸»Çß´Ù. ¡°¿ì¸®´Â µ¿ÀÏÇÑ »ùÇà ¼Ó¿¡ Á¸ÀçÇϴ ȣ¸£¸ó, BPA, ³ó¾àÀ» Á¦°ÅÇÒ ¼ö ÀÖ°í, ÀÌ°ÍÀº ÇÑ ´Ü°è·Î ¼öÇàÇÒ ¼ö ÀÖ´Ù¡±°í BrandlÀÌ µ¡ºÙ¿´´Ù. 

³ª³ëÀÔÀÚÀÇ ³ôÀº Ç¥¸éÀû ´ë ºÎÇÇ ºñÀ²Àº ÀÛÀº ¾çÀ¸·Î ¸¹Àº ¿À¿°¹°ÁúÀ» Á¦°ÅÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. ÀÌ ±â¼úÀº ¿À¿°µÈ ¹°°ú Åä¾çÀ» ºñ¿ë È¿À²ÀûÀ¸·Î Á¤È­½ÃÅ°´Âµ¥ Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ´Ù. ÀÌ ¿¬±¸´Â ³ª³ëÅ©±â ¾à¹° Àü´Þ ±â¼ú°ú ȯ°æÀû °³¼± ±â¼ú¿¡µµ Àû¿ëµÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù. ¡°¿ì¸®´Â Á¦¾à »ê¾÷À» À§ÇÑ ¸Å¿ì Á¤±³ÇÑ °íÁ¤¹Ð Åø¿¡ ÀÌ°ÍÀ» Àû¿ëÇÏ·Á°í ³ë·ÂÇÏ°í ÀÖ°í, Á¦¾à ºÐ¾ß¿¡ ÀÌ ±â¼úÀ» »ç¿ëÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¶»çÇÏ°í ÀÖ´Ù¡±°í Frank Gu ±³¼ö°¡ ¸»Çß´Ù. ÀÌ ¿¬±¸°á°ú´Â Àú³Î Nature Communications¿¡ ¡°Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil¡±À̶ó´Â Á¦¸ñÀ¸·Î °ÔÀçµÇ¾ú´Ù(doi:10.1038/ncomms8765).

±×¸². ¹°°ú Åä¾ç ¼ÓÀÇ ¿À¿°¹°ÁúÀ» ÃßÃâÇϴµ¥ »ç¿ëµÇ´Â ³ª³ëÀÔÀÚ.

[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 7¿ù 27ÀÏ]
 
[¿ø¹®º¸±â]
 
New study shows how nanoparticles can clean up environmental pollutants

Many human-made pollutants in the environment resist degradation through natural processes, and disrupt hormonal and other systems in mammals and other animals. Removing these toxic materials — which include pesticides and endocrine disruptors such as bisphenol A (BPA) — with existing methods is often expensive and time-consuming.

In a new paper published this week in Nature Communications ("Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil"), researchers from MIT and the Federal University of Goiás in Brazil demonstrate a novel method for using nanoparticles and ultraviolet (UV) light to quickly isolate and extract a variety of contaminants from soil and water.

Ferdinand Brandl and Nicolas Bertrand, the two lead authors, are former postdocs in the laboratory of Robert Langer, the David H. Koch Institute Professor at MIT¡¯s Koch Institute for Integrative Cancer Research. (Eliana Martins Lima, of the Federal University of Goiás, is the other co-author.) Both Brandl and Bertrand are trained as pharmacists, and describe their discovery as a happy accident: They initially sought to develop nanoparticles that could be used to deliver drugs to cancer cells.

Brandl had previously synthesized polymers that could be cleaved apart by exposure to UV light. But he and Bertrand came to question their suitability for drug delivery, since UV light can be damaging to tissue and cells, and doesn¡¯t penetrate through the skin. When they learned that UV light was used to disinfect water in certain treatment plants, they began to ask a different question.

¡°We thought if they are already using UV light, maybe they could use our particles as well,¡± Brandl says. ¡°Then we came up with the idea to use our particles to remove toxic chemicals, pollutants, or hormones from water, because we saw that the particles aggregate once you irradiate them with UV light.¡±

A trap for ¡®water-fearing¡¯ pollution

The researchers synthesized polymers from polyethylene glycol, a widely used compound found in laxatives, toothpaste, and eye drops and approved by the Food and Drug Administration as a food additive, and polylactic acid, a biodegradable plastic used in compostable cups and glassware.

Nanoparticles made from these polymers have a hydrophobic core and a hydrophilic shell. Due to molecular-scale forces, in a solution hydrophobic pollutant molecules move toward the hydrophobic nanoparticles, and adsorb onto their surface, where they effectively become ¡°trapped.¡± This same phenomenon is at work when spaghetti sauce stains the surface of plastic containers, turning them red: In that case, both the plastic and the oil-based sauce are hydrophobic and interact together.

If left alone, these nanomaterials would remain suspended and dispersed evenly in water. But when exposed to UV light, the stabilizing outer shell of the particles is shed, and — now ¡°enriched¡± by the pollutants — they form larger aggregates that can then be removed through filtration, sedimentation, or other methods.

The researchers used the method to extract phthalates, hormone-disrupting chemicals used to soften plastics, from wastewater; BPA, another endocrine-disrupting synthetic compound widely used in plastic bottles and other resinous consumer goods, from thermal printing paper samples; and polycyclic aromatic hydrocarbons, carcinogenic compounds formed from incomplete combustion of fuels, from contaminated soil.

The process is irreversible and the polymers are biodegradable, minimizing the risks of leaving toxic secondary products to persist in, say, a body of water. ¡°Once they switch to this macro situation where they¡¯re big clumps,¡± Bertrand says, ¡°you won¡¯t be able to bring them back to the nano state again.¡±

The fundamental breakthrough, according to the researchers, was confirming that small molecules do indeed adsorb passively onto the surface of nanoparticles.

¡°To the best of our knowledge, it is the first time that the interactions of small molecules with pre-formed nanoparticles can be directly measured,¡± they write in Nature Communications.

Nano cleansing

Even more exciting, they say, is the wide range of potential uses, from environmental remediation to medical analysis.

The polymers are synthesized at room temperature, and don¡¯t need to be specially prepared to target specific compounds; they are broadly applicable to all kinds of hydrophobic chemicals and molecules.

And the nanoparticles¡¯ high surface-area-to-volume ratio means that only a small amount is needed to remove a relatively large quantity of pollutants. The technique could thus offer potential for the cost-effective cleanup of contaminated water and soil on a wider scale.

¡°From the applied perspective, we showed in a system that the adsorption of small molecules on the surface of the nanoparticles can be used for extraction of any kind,¡± Bertrand says. ¡°It opens the door for many other applications down the line.¡±

This approach could possibly be further developed, he speculates, to replace the widespread use of organic solvents for everything from decaffeinating coffee to making paint thinners. Bertrand cites DDT, banned for use as a pesticide in the U.S. since 1972 but still widely used in other parts of the world, as another example of a persistent pollutant that could potentially be remediated using these nanomaterials. ¡°And for analytical applications where you don¡¯t need as much volume to purify or concentrate, this might be interesting,¡± Bertrand says, offering the example of a cheap testing kit for urine analysis of medical patients.

The study also suggests the broader potential for adapting nanoscale drug-delivery techniques developed for use in environmental remediation.

¡°That we can apply some of the highly sophisticated, high-precision tools developed for the pharmaceutical industry, and now look at the use of these technologies in broader terms, is phenomenal,¡± says Frank Gu, an assistant professor of chemical engineering at the University of Waterloo in Canada, and an expert in nanoengineering for health care and medical applications.

¡°When you think about field deployment, that¡¯s far down the road, but this paper offers a really exciting opportunity to crack a problem that is persistently present,¡± says Gu, who was not involved in the research. ¡°If you take the normal conventional civil engineering or chemical engineering approach to treating it, it just won¡¯t touch it. That¡¯s where the most exciting part is.¡±  
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [»ï¼º¹°»ê] 2Á¶¿ø ±Ô¸ð īŸ¸£ ´ã¼öº¹ÇÕ¹ßÀü ÇÁ·ÎÁ§Æ® ¼öÁÖ
´ÙÀ½±Û [¹Ì±¹] Ææ½Çº£´Ï¾Æ, 12°³ Áö¿ª¿¡ ´ëÇÑ 9õ830¸¸ ´Þ·¯ ±Ô¸ð ¹° ÀÎÇÁ¶ó ÀÚ±Ý ¹ßÇ¥
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.